The ability of Pycnoporus sanguineus to adsorb heavy metals from aqueous solution was investigated in fixed-bed column studies. The experiments were conducted to study the effect of important design parameters such as column bed height, flow rate and initial concentration of solution. The breakthrough profiles were obtained in these studies. A mathematical model based on external mass transfer and pore diffusion was used for the prediction of mass transfer coefficient and effective diffusivity of metals in macro-fungi bed. Experimental breakthrough profiles were compared with the simulated breakthrough profiles obtained from the mathematical model. Bed Depth Service Time (BDST) model was used to analyse the experimental data and evaluated the performance of biosorption column. The BDST model parameters needed for the design of biosorption columns were evaluated for lead, copper and cadmium removal in the column. The columns were regenerated by eluting the metal ions using 0.1 M hydrochloric acid solution after the adsorption studies. The columns were subjected to repeated cycles of adsorption of same metal ions and desorption to evaluate the removal efficiency after adsorption-desorption.
A study on the kinetics of accumulation and depuration of Zn, Cu, Pb and Cd by the oysters (Crassostrea iredalei and Crassostrea belcheri) cultured at two locations in the Merbok Estuary, Malaysia was conducted. A first-order kinetic model was employed to fit the experimental data in order to estimate the rate constants for uptake and elimination processes and to predict the bioconcentration factors (BCF). Among the four metals studied, only the Zn accumulation process could not be modelled using first-order kinetics. The elimination rate constants estimated from depuration data for C. iredalei are found to be much greater than those from accumulation data. The results suggest that the values of kinetic parameters and BCFs derived under conditions of both aqueous and dietary exposure are probably more site- than species-specific.
Concentrations of cadmium (Cd), lead (Pb) and zinc (Zn) in total soft tissues (ST) and byssus (BYS) of the green-lipped mussel Perna viridis from 11 different geographical locations off the west coast of Peninsular Malaysia were determined. The metal concentrations distributed between the BYS and ST were compared. The results of this study indicated that higher levels of Cd (1.31 microg/g), Pb (38.49 microg/g) and Zn (206.52 microg/g) were accumulated in the BYS than in the total ST (Cd: 0.29 microg/g; Pb: 8.27 microg/g; Zn: 102.6 microg/g). Semi-static and short period controlled laboratory experiments were also conducted for the accumulation and depuration of Cd, Pb and Zn in the total ST and BYS of P. viridis. The ratios (BYS/ST) for Pb and Cd from the laboratory experiments showed that the total ST accumulated more metals than the BYS. Therefore, these laboratory results disagreed with those found for the field samples. However, the laboratory results for the Zn ratio (BYS/ST) agreed with those of the field samples. It was evident that when compared to the ST, the BYS was a more sensitive biomonitoring organ for Zn while it could be a complementary organ for Cd and Pb in the total ST. Since total ST of P. viridis had been reported to have regulative mechanism for Zn, its BYS can be used as a biomonitoring organ for the identification of coastal areas exposed to Zn pollution.
Total concentrations and speciation of cadmium (Cd), copper (Cu), lead (Pb) and zinc (Zn) in surface sediment samples were correlated with the respective metal measured in the total soft tissue of the green-lipped mussel Perna viridis, collected from water off the west coast of Peninsular Malaysia. The aim of this study is to relate the possible differences in the accumulation patterns of the heavy metals in P. viridis to those in the surface sediment. The sequential extraction technique was employed to fractionate the sediment into 'freely leachable and exchangeable' (EFLE), 'acid-reducible,' 'oxidisable-organic' and 'resistant' fractions. The results showed that significant (P .05) was found between Zn in P viridis and all the sediment geochemical fractions of Zn and total Zn in the sediment. This indicated that Zn was possibly regulated from the soft tissue of P. viridis. The present results supported the use of P viridis as a suitable biomonitoring agent for Cd, Cu and Pb.
This study examined the possible protective effect of quercetin(QE) on cadmium chloride (CdCl2) - induced reproductive toxicity in female rats. Cadmium (Cd) accumulated in the uterus and ovaries of rats, decreased antioxidants [superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione (GSH)], and raised the concentrations of malondialdehyde (MDA) and hydrogen peroxide (H2O2) in the uterus and ovaries of rats. Serum concentrations of estradiol, progesterone, follicle stimulating hormone and luteinizing hormone decreased significantly after CdCl2 administration. Caspase-3 activity significantly increased in the ovaries, with an increase in Bax and a decrease in Bcl-2 protein expressions after CdCl2 treatment. Histopathology of the ovaries revealed significant decrease in follicle number, while the uterus showed cyst-like endometrial glands. All three models of QE treatment [pre-treatment (QE + CdCl2), post-treatment (CdCl2+QE), simultaneous treatment (CdCl2/QE)] decreased Cd accumulation, MDA, H2O2, and increased SOD, CAT and GPx activities in the uterus and ovaries, decreased apoptosis of follicular cells, and increased serum reproductive hormones. However, the QE pre-treated model offered better protection against CdCl2 relative to the other two models. These results suggest that, QE exerts multi-mechanistic protective effects against cadmium toxicity attributable to its antioxidant and anti-apoptotic actions.
Cadmium has been classified as an environmental pollutant and human carcinogen. Pectin is a family of complex polysaccharides that function as hydrating agents and cementing materials for the cellulosic network. The aim of this study was to evaluate the protective role of pectin against cadmium-induced testicular toxicity and oxidative stress in rats. Forty male Wistar rats were divided into five equal groups. Groups 1 and 2 were injected intraperitoneally (i.p.) saline (1 mg/kg) and pectin (50 mg/kg), respectively, two days/weeks over three weeks period. Groups 3-5 were injected i.p. with 1 mg/kg cadmium two days/week while groups 4 and 5 co-administrated i.p. with 25 and 50 mg/kg pectin, respectively, three days/week over three weeks period. The results of the present work revealed that cadmium-exposed rats showed decrease in serum testosterone, dehydroepiandrosterone sulfate and lactate dehydrogenase. Testicular cholesterol, total protein, glucose-6-phosphate dehydrogenase, 3β-hydroxysteroid dehydrogenase, superoxide dismutase, glutathione peroxidase, catalase, glutathione S-transferase and reduced glutathione levels were also decreased while testicular malondialdehyde level was increased after cadmium injection. On the other hand, serum luteinizing hormone, follicle stimulating hormone, sex hormone binding globulin and γ-glutamyl transpeptidase were increased after cadmium exposure. Cadmium also induced sperms loss. Co-administration of pectin with cadmium restores all the above parameters and sperms to the normal levels where pectin at higher dose was more effective than lower one. These results were supported by histochemical investigations. In conclusion, pectin can counteract the testicular toxicity and oxidative stress induced by cadmium and the effect was dose-dependent.