METHODS AND RESULTS: This study investigates the effect of overexpressing the rice HKT1;5 gene in Arabidopsis thaliana on its tolerance to salinity and drought. The OsHKT1;5 gene was introduced into Arabidopsis under the control of 35 S promoter of CaMV via floral dip transformation method. PCR confirmed the integration of the transgene into the Arabidopsis genome, while qPCR analysis showed its expression. Three transgenic lines of OsHKT1;5 were used for stress treatment and phenotypic studies. The overexpressed lines showed considerably higher germination rates, increased leaf counts, greater fresh and dry weights of the roots and shoots, higher chlorophyll contents, longer root lengths, and reduced Na+ levels together with increased K+ ions levels after salt and drought treatments, in comparison to wild-type plants. Furthermore, overexpressed lines exhibited higher antioxidant levels than wild-type plants under salinity and drought conditions. In addition, transgenic lines showed higher expression levels of the OsHKT1;5 gene in both roots and shoots compared to wild-type plants.
CONCLUSIONS: In conclusion, this study revealed OsHKT1;5 as a promising candidate for enhancing tolerance to salinity and drought stresses in rice, marking a significant step toward developing a new rice variety with improved abiotic stress tolerance.
METHODS: Orchidectomized, adult male rats were given 125 and 250 μg/kg/day testosterone subcutaneously, with or without flutamide and finasteride for seven consecutive days. At the end of the treatment, rats were anesthetized and vas deferens were perfused. Changes in vas deferens fluid secretion rate, pH, HCO3-, Cl- and Na+ concentrations were recorded in the presence of amiloride and Cftr inh-172. Rats were then sacrificed and vas deferens were harvested and subjected for molecular biological analysis.
RESULTS: Testosterone treatment caused the fluid pH and HCO3- concentrations to decrease but secretion rate, Cl- and Na+ concentrations to increase, where upon amiloride administration, the pH and HCO3- concentration increased but Cl- and Na+ concentrations further increased. In testosterone-treated rats, administration of Cftr inh-172 caused all fluid parameters to decrease. In testosterone-treated rats co-administered with flutamide or finasteride, pH and HCO3- concentration increased but fluid secretion rate, Cl- and Na+ concentrations decreased and these parameters were not affected by amiloride or Cftr inh-172 administration. Under testosterone influence, CFTR and γ-ENaC were highly expressed at the apical membrane while NHE-1 and 4 were highly expressed at the basolateral membrane of vas deferens epithelium. Meanwhile, NHE-2 and 3 were highly expressed at the apical membrane.
CONCLUSIONS: Differential expression of ENaC, CFTR and NHE in vas deferens under testosterone influence indicated the important role of these transporters in creating optimal fluid microenvironment that is essential for preserving male fertility.