Displaying publications 1 - 20 of 27 in total

Abstract:
Sort:
  1. Ahmed N, Halim MSB, Ghani ZA, Khan ZA, Abbasi MS, Jamayet NB, et al.
    Biomed Res Int, 2021;2021:6674400.
    PMID: 33969123 DOI: 10.1155/2021/6674400
    The objective of this paper was to evaluate the existence of golden percentage in natural maxillary anterior teeth with the aid of 3D digital dental models and 2D photographs. And to propose regional values of golden percentage for restoration of maxillary anterior teeth. For this purpose, one hundred and ninety dentate subjects with sound maxillary anterior teeth were selected. Standardized frontal images were captured with DSLR, and the apparent width of maxillary anterior teeth was measured utilizing a software on a personal laptop computer. Once the dimensions were recorded, the calculations were made according to the golden percentage theory (GPT). The data were analyzed by independent and paired T-test. The level of significance was set at p < 0.05. The golden percentage values were not found in this study. The values obtained were 16%, 15%, 20%, 20%, 15%, and 16% moving from the right canine to the left canine teeth. There was no significant gender difference in the golden percentage values. Thus, golden percentage should not be used solely for the correction of anterior teeth or for determining dental attractiveness. Emphasis should be given to a range of dental proportion on regional basis.
    Matched MeSH terms: Dental Models*
  2. Wan Hassan WN, Yusoff Y, Mardi NA
    Am J Orthod Dentofacial Orthop, 2017 Jan;151(1):209-218.
    PMID: 28024776 DOI: 10.1016/j.ajodo.2016.08.019
    INTRODUCTION: Rapid prototyping models can be reconstructed from stereolithographic digital study model data to produce hard-copy casts. In this study, we aimed to compare agreement and accuracy of measurements made with rapid prototyping and stone models for different degrees of crowding.

    METHODS: The Z Printer 450 (3D Systems, Rock Hill, SC) reprinted 10 sets of models for each category of crowding (mild, moderate, and severe) scanned using a structured-light scanner (Maestro 3D, AGE Solutions, Pisa, Italy). Stone and RP models were measured using digital calipers for tooth sizes in the mesiodistal, buccolingual, and crown height planes and for arch dimension measurements. Bland-Altman and paired t test analyses were used to assess agreement and accuracy. Clinical significance was set at ±0.50 mm.

    RESULTS: Bland-Altman analysis showed the mean bias of measurements between the models to be within ±0.15 mm (SD, ±0.40 mm), but the 95% limits of agreement exceeded the cutoff point of ±0.50 mm (lower range, -0.81 to -0.41 mm; upper range, 0.34 to 0.76 mm). Paired t tests showed statistically significant differences for all planes in all categories of crowding except for crown height in the moderate crowding group and arch dimensions in the mild and moderate crowding groups.

    CONCLUSIONS: The rapid prototyping models were not clinically comparable with conventional stone models regardless of the degree of crowding.

    Matched MeSH terms: Dental Models*
  3. Nawi N, Mohamed AM, Marizan Nor M, Ashar NA
    J Orofac Orthop, 2018 Jan;79(1):19-27.
    PMID: 29116344 DOI: 10.1007/s00056-017-0111-3
    OBJECTIVE: The aim of the present study was to determine the overall reliability and validity of arch parameters measured digitally compared to conventional measurement.

    METHODS: A sample of 111 plaster study models of Down syndrome (DS) patients were digitized using a blue light three-dimensional (3D) scanner. Digital and manual measurements of defined parameters were performed using Geomagic analysis software (Geomagic Studio 2014 software, 3D Systems, Rock Hill, SC, USA) on digital models and with a digital calliper (Tuten, Germany) on plaster study models. Both measurements were repeated twice to validate the intraexaminer reliability based on intraclass correlation coefficients (ICCs) using the independent t test and Pearson's correlation, respectively. The Bland-Altman method of analysis was used to evaluate the agreement of the measurement between the digital and plaster models.

    RESULTS: No statistically significant differences (p > 0.05) were found between the manual and digital methods when measuring the arch width, arch length, and space analysis. In addition, all parameters showed a significant correlation coefficient (r ≥ 0.972; p 

    Matched MeSH terms: Dental Models*
  4. Shahid F, Alam MK, Khamis MF
    Eur J Dent, 2016 4 21;10(2):176-182.
    PMID: 27095892 DOI: 10.4103/1305-7456.178299
    OBJECTIVE: Comprehensive diagnosis and treatment planning are essential in a successful orthodontic practice. The purpose of this study is to determine and compare intermaxillary tooth size discrepancy (IMTSD) using traditional digital caliper (DC) measurement on plaster dental models and stereomicroscopic digital dental models (SM).

    MATERIALS AND METHODS: The samples were randomly selected from different states of Pakistan. Total 7168 variables were measured on plaster dental casts (128) and SM digital dental models (128) according to the selection criteria. For IMTSD, the 6 variable measured as for anterior tooth size (maxilla, mandibular), overall tooth size (maxilla, mandibular), Bolton's anterior ratios (BAR), and Bolton's overall ratios (BOR). The independent t-test and ANOVA were used for statistical analyses.

    RESULTS: Significant sexual disparities in the sum of anterior tooth size and overall tooth size via DC and SM methods. No significant sexual disparities for BAR and BOR. No statistically significant differences were found in BAR and BOR between DC and SM. No significant differences were found on IMTSD ratio among different arch length and arch perimeters groups.

    CONCLUSIONS: Norms were developed based on DC and SM for IMTSD. Sexual disparities were observed in the sum of teeth size. However, no significant differences in BAR and BOR for IMTSD between the two methods.

    Matched MeSH terms: Dental Models
  5. Wan Hassan WN, Othman SA, Chan CS, Ahmad R, Ali SN, Abd Rohim A
    Am J Orthod Dentofacial Orthop, 2016 Nov;150(5):886-895.
    PMID: 27871715 DOI: 10.1016/j.ajodo.2016.04.021
    INTRODUCTION: In this study we aimed to compare measurements on plaster models using a digital caliper, and on 3-dimensional (3D) digital models, produced using a structured-light scanner, using 3D software.

    METHODS: Fifty digital models were scanned from the same plaster models. Arch and tooth size measurements were made by 2 operators, twice. Calibration was done on 10 sets of models and checked using the Pearson correlation coefficient. Data were analyzed by error variances, repeatability coefficient, repeated-measures analysis of variance, and Bland-Altman plots.

    RESULTS: Error variances ranged between 0.001 and 0.044 mm for the digital caliper method, and between 0.002 and 0.054 mm for the 3D software method. Repeated-measures analysis of variance showed small but statistically significant differences (P <0.05) between the repeated measurements in the arch and buccolingual planes (0.011 and 0.008 mm, respectively). There were no statistically significant differences between methods and between operators. Bland-Altman plots showed that the mean biases were close to zero, and the 95% limits of agreement were within ±0.50 mm. Repeatability coefficients for all measurements were similar.

    CONCLUSIONS: Measurements made on models scanned by the 3D structured-light scanner were in good agreement with those made on conventional plaster models and were, therefore, clinically acceptable.

    Matched MeSH terms: Dental Models*
  6. Baig MR, Buzayan MM, Yunus N
    J Investig Clin Dent, 2018 May;9(2):e12320.
    PMID: 29349910 DOI: 10.1111/jicd.12320
    AIM: The aim of the present study was to assess the accuracy of multi-unit dental implant casts obtained from two elastomeric impression materials, vinyl polyether silicone (VPES) and polyether (PE), and to test the effect of splinting of impression copings on the accuracy of implant casts.

    METHODS: Forty direct impressions of a mandibular reference model fitted with six dental implants and multibase abutments were made using VPES and PE, and implant casts were poured (N = 20). The VPES and PE groups were split into four subgroups of five each, based on splinting type: (a) no splinting; (b) bite registration polyether; (c) bite registration addition silicone; and (d) autopolymerizing acrylic resin. The accuracy of implant-abutment replica positions was calculated on the experimental casts, in terms of interimplant distances in the x, y, and z-axes, using a coordinate measuring machine; values were compared with those measured on the reference model. Data were analyzed using non-parametrical Kruskal-Wallis and Mann-Whitney tests at α = .05.

    RESULTS: The differences between the two impression materials, VPES and PE, regardless of splinting type, were not statistically significant (P>.05). Non-splinting and splinting groups were also not significantly different for both PE and VPES (P>.05).

    CONCLUSIONS: The accuracy of VPES impression material seemed comparable with PE for multi-implant abutment-level impressions. Splinting had no effect on the accuracy of implant impressions.

    Matched MeSH terms: Dental Models*
  7. Nambiar P, Carson G, Taylor JA, Brown KA
    J Forensic Odontostomatol, 2001 Jun;19(1):5-8.
    PMID: 11494677
    A wad of used chewing gum recovered from the scene of a burglary contained impressions of human teeth. Casts of these impressions displayed unique morphological characteristics which were found to show concordance with corresponding features present on casts of the posterior teeth of a suspect.
    Matched MeSH terms: Dental Models
  8. Abdelrehim A, Salleh NM, Sofian H, Sulaiman E
    J Oral Implantol, 2024 Apr 01;50(2):104-110.
    PMID: 38353347 DOI: 10.1563/aaid-joi-D-23-00063
    Accuracy is a necessity in implant impressions to fabricate accurately fitting implant-supported prostheses. This in vitro study aimed to explore the impact of the number of scan bodies on scanning quality by comparing scans of 2 vs 4 implants, and to determine if their accuracy and precision meets acceptable clinical threshold. Two mandibular edentulous models were used: one with 4-parallel implants (4-IM) and the other with 2-parallel implants (2-IM). Each model was scanned 10 times with an intraoral scanner, while reference scans were obtained with a high-precision laboratory scanner. The accuracy of test scans was evaluated by superimposing them onto reference scans and measuring 3D and angular deviations of the scan bodies. To assess the precision, the repeatability of the scans was analyzed by measuring the 3D SDs. Independent t test was used to compare angular deviations, the Mann-Whitney U test was used for 3D deviations and 3D SDs, and 1 sample t test was used for comparing means to the clinical threshold. Angular and 3D deviations were statistically not significant between the 2 groups (P = .054 and 0.143). 3D deviation values were higher than the 150-µm threshold for 2-IM (201 µm) and 4-IM (290 µm); angular deviation in 2-IM was 0.600 degrees and 0.885 degrees for 4-IM. There was no statistically significant difference in the precision of scans between the 2 groups. (P = .161). Although scanning quality improved when 2 scan bodies were used, the difference was not statistically significant. Moreover, full-arch implant scanning did not meet acceptable levels of accuracy and precision.
    Matched MeSH terms: Dental Models
  9. Ishak MI, Kadir MR, Sulaiman E, Kasim NH
    Int J Oral Maxillofac Implants, 2013 May-Jun;28(3):e151-60.
    PMID: 23748334 DOI: 10.11607/jomi.2304
    To compare the extramaxillary approach with the widely used intrasinus approach via finite element method.
    Matched MeSH terms: Dental Models*
  10. Tarib NA, Seong TW, Chuen KM, Kun MS, Ahmad M, Kamarudin KH
    Eur J Prosthodont Restor Dent, 2012 Mar;20(1):35-9.
    PMID: 22474935
    This paper aims to evaluate the effect of splinting during implant impression. A master model with two fixtures at the sites of 45 and 47 was used. 20 impressions were made for all four techniques: (A) indirect; (B) direct, unsplinted; (C) direct, splinted; and (D) direct, splinted, sectioned, and re-splinted. Splinting was undertaken with autopolymerizing acrylic resin (AAR). Horizontal distance between fixtures was compared using a digital caliper. The difference in distance were analysed with one-way ANOVA. Group A showed a significantly lowest accuracy among all techniques (p < or = 0.05). There was no significant difference of accuracy among the groups using direct techniques (p > or = 0.05). Group D was more accurate compared to group B and C. We conclude that splinting of impression copings would be beneficial to obtain an accurate impression.
    Matched MeSH terms: Dental Models
  11. Al-Khatib AR, Rajion ZA, Masudi SM, Hassan R, Townsend GC
    Aust Orthod J, 2012 May;28(1):22-9.
    PMID: 22866590
    The development of three-dimensional computer imaging has many applications in dentistry, including the analysis of dental casts.
    Matched MeSH terms: Dental Models
  12. Sockalingam S
    J Indian Soc Pedod Prev Dent, 2011 Jan-Mar;29(1):53-6.
    PMID: 21521920 DOI: 10.4103/0970-4388.79938
    Amelogenesis imperfecta represents a group of dental developmental conditions that are genomic in origin. Hypoplastic AI, hypomineralised AI or both in combination were the most common types seen clinically. This paper describes oral rehabilitation of a 9-year-old Malay girl with inherited hypoplastic AI using transparent thermoforming templates. The defective surface areas were reconstructed to their original dimensions on stone cast models of the upper and lower arches using composite, and transparent thermoform templates were fabricated on the models. The templates were used as crown formers to reconstruct the defective teeth clinically using esthetically matching composite. The usage of the templates allowed direct light curing of the composite, accurate reproducibility of the anatomic contours of the defective teeth, reduced chair-side time and easy contouring and placement of homogenous thickness of composite in otherwise inaccessible sites of the affected teeth.
    Matched MeSH terms: Dental Models
  13. Banabilh SM, Rajion ZA, Samsudin R, Singh GD
    Aust Orthod J, 2006 Nov;22(2):99-103.
    PMID: 17203572
    To quantify and localise differences in Class I and Class II dental arches in Malay schoolchildren.
    Matched MeSH terms: Dental Models
  14. Chong JA, Syed Mohamed AMF, Marizan Nor M, Pau A
    J Forensic Sci, 2020 Nov;65(6):2000-2007.
    PMID: 32692413 DOI: 10.1111/1556-4029.14507
    Although there is clinical applicability of the palatal rugae as an identification tool in forensic odontology, controversy exists whether the palatal rugae patterns are stable or variable. The greater the genetic component, the higher the probability that palatal rugae patterns are stable. The aim of this study was to compare the palatal rugae morphology between full siblings and the proportion of variability due to genetic component. This cross-sectional study was conducted on digital models of 162 siblings aged 15-30 years old. The palatal rugae patterns were assessed with Thomas and Kotze (1983) classification using Geomagic Studio software (3D Systems, Rock Hill, SC). The palatal rugae morphology between siblings showed significantly similar characteristics for total number of left rugae (p = 0.001), left primary rugae (p = 0.017), secondary rugae for right (p = 0.024) and left sides (p = 0.001), right straight rugae (p = 0.010), and right convergent rugae (p = 0.005) accounting for at least 6.25%-12.8% of the variability due to heredity. Despite the similarities found, the palatal rugae patterns showed significant differences between siblings of at least 46.9% (p = 0.001). Zero heritability was found in 9 of the 14 rugae patterns. Meanwhile, total number of rugae, primary, backward, and convergent rugae showed moderate heritability (h2  > 0.3) and total number of secondary rugae showed high heritability (h2  > 0.6). In conclusion, despite the individuality characteristics, an appreciable hereditary component is observed with significant similarities found between sibling pairs and the palatal rugae patterns were both environmentally and genetically influenced.
    Matched MeSH terms: Dental Models
  15. Arshad AI, Alam MK, Khamis MF
    Cleft Palate Craniofac J, 2018 05;55(5):682-687.
    PMID: 29518343 DOI: 10.1177/1055665618758278
    OBJECTIVES: The aim of this study is to assess the treatment outcome of complete unilateral cleft lip and palate (CUCLP) patients using modified Huddart/Bodenham scoring system (MHB). To determine whether there is an association of congenital and postnatal factors with the treatment outcome.

    DESIGN: Retrospective observational study.

    SETTING: Two regional cleft-referral centers.

    MAIN OUTCOME MEASURES: In the current study, 101 pairs of dental models of non-syndromic CUCLP patients were retrieved from hospital archives. Each occlusal relationship from central incisor till the first permanent molars were scored except the lateral incisor. Sum of 10 occlusal relationships in each study sample gave a total occlusion score. The primary outcome was the mean total occlusion score.

    RESULTS: According to MHB, a mean (standard deviation) total occlusion score of -8.92 (6.89) was determined. Based on treatment outcome, 66 cases were favorable (grades 1, 2, and 3) and 35 cases were unfavorable (grades 4 and 5). Chi-square tests indicated, difference of cheiloplasty ( P = .001) and palatoplasty ( P < .001) statistically significant. Five variables-gender, family history of cleft, cleft side, cheiloplasty, and palatoplasty-were analyzed with a logistic regression model.

    CONCLUSIONS: Final model indicated that cases treated with modified Millard technique (cheiloplasty) and Veau-Wardill-Kilner method (palatoplasty) had higher odds of unfavorable treatment outcome.

    Matched MeSH terms: Dental Models
  16. Alsrouji MS, Ahmad R, Abdul Razak NH, Shuib S, Kuntjoro W, Baba NZ
    J Prosthodont, 2019 Feb;28(2):e764-e770.
    PMID: 30044033 DOI: 10.1111/jopr.12954
    PURPOSE: To relate the principal stress, strain, and total deformation in the premaxilla region beneath a complete denture to the pattern of premaxilla bone resorption when opposed by a conventional complete denture (CD) or by a two-implant-retained overdenture (IOD) using finite element analysis (FEA).

    MATERIALS AND METHODS: Three-dimensional solid models of the maxilla, mucosa, and denture of a selected edentulous patient were created using Mimics and CATIA software. The FEA model was created and duplicated in ANSYS 16.0 to perform two simulations for the IOD and the CD models. The values of maximum stress and strain and total deformation were obtained and compared to the outcomes of premaxilla resorption from a parallel clinical study.

    RESULTS: The maximum principal stress in the premaxilla in the IOD model ranged from 0.019 to 0.336 MPa, while it ranged from 0.011 to 0.193 MPa in the CD model. The maximum principal strain in the IOD model was 1.75 times greater than that in the CD model. Total deformation was 1.8 times higher in the IOD model. Greater bone resorption was observed in regions of higher stress, which were on the occlusal and buccal sides of the premaxilla residual ridge.

    CONCLUSION: Stress, strain, and total deformation values present in the premaxilla area beneath a CD were approximately two times greater in a comparison between an opposing mandibular two-IOD and an opposing mandibular CD. The results were consistent with a parallel clinical study in which the rate of premaxilla bone resorption was almost three times greater in the IOD group.

    Matched MeSH terms: Dental Models
  17. Zabidin N, Mohamed AM, Zaharim A, Marizan Nor M, Rosli TI
    Int Orthod, 2018 03;16(1):133-143.
    PMID: 29478934 DOI: 10.1016/j.ortho.2018.01.009
    OBJECTIVES: To evaluate the relationship between human evaluation of the dental-arch form, to complete a mathematical analysis via two different methods in quantifying the arch form, and to establish agreement with the fourth-order polynomial equation.

    MATERIALS AND METHODS: This study included 64 sets of digitised maxilla and mandible dental casts obtained from a sample of dental arch with normal occlusion. For human evaluation, a convenient sample of orthodontic practitioners ranked the photo images of dental cast from the most tapered to the less tapered (square). In the mathematical analysis, dental arches were interpolated using the fourth-order polynomial equation with millimetric acetate paper and AutoCAD software. Finally, the relations between human evaluation and mathematical objective analyses were evaluated.

    RESULTS: Human evaluations were found to be generally in agreement, but only at the extremes of tapered and square arch forms; this indicated general human error and observer bias. The two methods used to plot the arch form were comparable.

    CONCLUSION: The use of fourth-order polynomial equation may be facilitative in obtaining a smooth curve, which can produce a template for individual arch that represents all potential tooth positions for the dental arch.

    Matched MeSH terms: Dental Models
  18. Banabilh SM, Suzina AH, Dinsuhaimi S, Samsudin AR, Singh GD
    J Oral Rehabil, 2009 Mar;36(3):184-92.
    PMID: 19207445 DOI: 10.1111/j.1365-2842.2008.01915.x
    The association between dental arch morphology and the aetiology of obstructive sleep apnoea (OSA) is not clear. To compare dental arch morphology in 108 Asian adults with and without ''OSA, overnight'' hospital polysomnography was performed, and sleep reports were obtained for all subjects. Standardized digital photographs were also taken of the subjects' upper and lower study models. Using 25 homologous landmarks, mean OSA and control dental arch configurations were computed, and subjected to finite-element morphometry (FEM), t-tests and principal components analysis (PCA). Mean upper and lower OSA dental arch morphologies were statistically different from respective Control upper and lower arch morphologies (P < 0.05). FEM of the upper arch indicated that the mean OSA configuration was 7-11% narrower in the transverse plane in the incisor and canine regions when compared with the control configuration, and inter-landmark analysis (ILA) confirmed this finding. FEM for the lower arch indicated that the mean OSA configuration was 10-11% narrower in the antero-posterior plane in the pre-molar and molar regions, and confirmed by ILA. Using PCA, significant differences were also found between the two groups in the lower arch using the first two eigenvalues, which accounted for 90% of the total shape change (P < 0.001). Supporting their role as aetiological factors, size and shape differences in dental arch morphology are found in patients with OSA.
    Matched MeSH terms: Dental Models
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links