Displaying all 5 publications

Abstract:
Sort:
  1. Cheah HL, Lim V, Sandai D
    PLoS One, 2014;9(4):e95951.
    PMID: 24781056 DOI: 10.1371/journal.pone.0095951
    Candida albicans is an opportunistic pathogen that causes candidiasis in humans. In recent years, metabolic pathways in C. albicans have been explored as potential antifungal targets to treat candidiasis. The glyoxylate cycle, which enables C. albicans to survive in nutrient-limited host niches and its. Key enzymes (e.g., isocitrate lyase (ICL1), are particularly attractive antifungal targets for C. albicans. In this study, we used a new screening approach that better reflects the physiological environment that C. albicans cells experience during infection to identify potential inhibitors of ICL. Three compounds (caffeic acid (CAFF), rosmarinic acid (ROS), and apigenin (API)) were found to have antifungal activity against C. albicans when tested under glucose-depleted conditions. We further confirmed the inhibitory potential of these compounds against ICL using the ICL enzyme assay. Lastly, we assessed the bioavailability and toxicity of these compounds using Lipinski's rule-of-five and ADMET analysis.
    Matched MeSH terms: Depsides/pharmacology
  2. Ngo YL, Lau CH, Chua LS
    Food Chem Toxicol, 2018 Nov;121:687-700.
    PMID: 30273632 DOI: 10.1016/j.fct.2018.09.064
    Rosmarinic acid is a bioactive phytochemical that can be found in many herbs as ethnomedicines. It possesses remarkable pharmacological activities, and thus leading to its exploration as a therapeutic drug in diabetes treatment recently. This article reviews the extraction and fractionation techniques for plant-based natural rosmarinic acid and its anti-diabetic potential based on literature data published in journals, books, and patents from 1958 to 2017. Factors affecting the performance of rosmarinic acid extraction and fractionation such as operating temperature, time, solvent to sample ratio and eluent system are compiled and discussed in detail. The inhibitory action of rosmarinic acid against sugar digestive enzymes, and protective action towards pancreatic β-cell dysfunction and glucolipotoxicity mediated oxidative stress are also critically reviewed. The optimal parameters are largely dependent on the applied extraction and fractionation techniques, as well as the nature of plant samples. Previous studies have proven the potent role of rosmarinic acid to control plasma glucose level and increase insulin sensitivity in hyperglycemia. Although rosmarinic acid is readily absorbed by human body, its mechanism after consumption is remained unclear. Intensive studies should be well planned to determine the dosage and toxicity level of rosmarinic acid for efficacy and safe consumption.
    Matched MeSH terms: Depsides/pharmacology*
  3. Roney M, Issahaku AR, Huq AM, Soliman MES, Tajuddin SN, Aluwi MFFM
    J Biomol Struct Dyn, 2024;42(24):13564-13587.
    PMID: 37909584 DOI: 10.1080/07391102.2023.2276879
    The epidermal growth factor receptor (EGFR) dimerizes upon ligand bindings to the extracellular domain that initiates the downstream signaling cascades and activates intracellular kinase domain. Thus, activation of autophosphorylation through kinase domain results in metastasis, cell proliferation, and angiogenesis. The main objective of this research is to discover more promising anti-cancer lead compound against EGRF from the phenolic acids of marine natural products using in-silico approaches. Phenolic compounds reported from marine sources are reviewed from previous literatures. Furthermore, molecular docking was carried out using the online tool CB-Dock. The molecules with good docking and binding energies scores were subjected to ADME, toxicity and drug-likeness analysis. Subsequently, molecules from the docking experiments were also evaluated using the acute toxicity and MD simulation studies. Fourteen phenolic compounds from the reported literatures were reviewed based on the findings, isolation, characterized and applications. Molecular docking studies proved that the phenolic acids have good binding fitting by forming hydrogen bonds with amino acid residues at the binding site of EGFR. Chlorogenic acid, Chicoric acid and Rosmarinic acid showed the best binding energies score and forming hydrogen bonds with amino acid residues compare to the reference drug Erlotinib. Among these compounds, Rosmarinic acid showed the good pharmacokinetics profiles as well as acute toxicity profile. The MD simulation study further revealed that the lead complex is stable and could be future drug to treat the cancer disease. Furthermore, in a wet lab environment, both in-vitro and in-vivo testing will be employed to validate the existing computational results.Communicated by Ramaswamy H. Sarma.
    Matched MeSH terms: Depsides/pharmacology
  4. Gautam RK, Gupta G, Sharma S, Hatware K, Patil K, Sharma K, et al.
    Int J Rheum Dis, 2019 Jul;22(7):1247-1254.
    PMID: 31155849 DOI: 10.1111/1756-185X.13602
    AIM: The purpose of our investigation is to evaluate the anti-arthritic potential of isolated rosmarinic acid from the rind of Punica granatum.

    METHOD: Rosmarinic acid was isolated by bioactivity-guided isolation from butanolic fraction of Punica granatum and acute toxicity of rosmarinic acid was carried out. The experiment was conducted at doses of 25 and 50 mg/kg, in Freund's complete adjuvant (FCA)-induced arthritic rats. Various parameters, that is arthritic score, paw volume, thickness of paw, hematological, antioxidant and inflammatory parameters such as glutathione (GSH), superoxide dismutase (SOD), malonaldehyde (MDA) and tumor necrosis factor-α (TNF-α) were also estimated.

    RESULTS: Rosmarinic acid significantly decreased the arthritic score, paw volume, joint diameter, white blood cell count and erythrocyte sedimentation rate. It also significantly increased body weight, hemoglobin and red blood cells. The significantly decreased levels of TNF-α were observed in treated groups as compared to arthritic control rats (P 

    Matched MeSH terms: Depsides/pharmacology*
  5. Hsieh CF, Jheng JR, Lin GH, Chen YL, Ho JY, Liu CJ, et al.
    Emerg Microbes Infect, 2020 Dec;9(1):1194-1205.
    PMID: 32397909 DOI: 10.1080/22221751.2020.1767512
    Enterovirus A71 (EV-A71), a positive-stranded RNA virus of the Picornaviridae family, may cause neurological complications or fatality in children. We examined specific factors responsible for this virulence using a chemical genetics approach. Known compounds from an anti-EV-A71 herbal medicine, Salvia miltiorrhiza (Danshen), were screened for anti-EV-A71. We identified a natural product, rosmarinic acid (RA), as a potential inhibitor of EV-A71 by cell-based antiviral assay and in vivo mouse model. Results also show that RA may affect the early stage of viral infection and may target viral particles directly, thereby interfering with virus-P-selectin glycoprotein ligand-1 (PSGL1) and virus-heparan sulfate interactions without abolishing the interaction between the virus and scavenger receptor B2 (SCARB2). Sequencing of the plaque-purified RA-resistant viruses revealed a N104K mutation in the five-fold axis of the structural protein VP1, which contains positively charged amino acids reportedly associated with virus-PSGL1 and virus-heparan sulfate interactions via electrostatic attraction. The plasmid-derived recombinant virus harbouring this mutation was confirmed to be refractory to RA inhibition. Receptor pull-down showed that this non-positively charged VP1-N104 is critical for virus binding to heparan sulfate. As the VP1-N104 residue is conserved among different EV-A71 strains, RA may be useful for inhibiting EV-A71 infection, even for emergent virus variants. Our study provides insight into the molecular mechanism of virus-host interactions and identifies a promising new class of inhibitors based on its antiviral activity and broad spectrum effects against a range of EV-A71.
    Matched MeSH terms: Depsides/pharmacology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links