DESIGN: Cross-sectional observational study.
SETTING: Twenty-three Asian countries and regions, covering 92.1% of the continent's population.
PARTICIPANTS: Ten low-income and lower-middle-income economies, five upper-middle-income economies, and eight high-income economies according to the World Bank classification.
INTERVENTIONS: Data closest to 2017 on critical care beds, including ICU and intermediate care unit beds, were obtained through multiple means, including government sources, national critical care societies, colleges, or registries, personal contacts, and extrapolation of data.
MEASUREMENTS AND MAIN RESULTS: Cumulatively, there were 3.6 critical care beds per 100,000 population. The median number of critical care beds per 100,000 population per country and region was significantly lower in low- and lower-middle-income economies (2.3; interquartile range, 1.4-2.7) than in upper-middle-income economies (4.6; interquartile range, 3.5-15.9) and high-income economies (12.3; interquartile range, 8.1-20.8) (p = 0.001), with a large variation even across countries and regions of the same World Bank income classification. This number was independently predicted by the World Bank income classification on multivariable analysis, and significantly correlated with the number of acute hospital beds per 100,000 population (r = 0.19; p = 0.047), the universal health coverage service coverage index (r = 0.35; p = 0.003), and the Human Development Index (r = 0.40; p = 0.001) on univariable analysis.
CONCLUSIONS: Critical care bed capacity varies widely across Asia and is significantly lower in low- and lower-middle-income than in upper-middle-income and high-income countries and regions.
METHOD: Data were obtained from 36 members of COSMIC, representing 28 countries across 6 continents (HICs: Australia, Canada, Faroe Islands, France, Germany, Greece, Italy, Japan, Netherlands, South Korea, Spain, Sweden, & USA; LMICs: Brazil, China, Cuba, Dominican Republic, Ecuador, Indonesia, Malaysia, Mexico, Nigeria, Peru, Philippines, Republic of Congo, & Tanzania). For each member study, we calculated incidence rates for all-cause dementia. Findings from 14 studies, with a consensus diagnosis are presented in the results. Using an Item Response Theory approach, we are currently calculating a comparable incidence rate for those studies without a consensus diagnosis.
RESULT: Consistent with previous trends, incidence rates (per 100 person-years) increased with age, from 65-70 years-old to 85-90 years-old, for both males (i.e., Republic of Congo, 4.41 to 19.57; France, 0.46 to 3.89; USA, 0.17 to 3.22; Spain, 0.31 to 4.22; 65-70 & 85-90 cohorts respectively) and females (i.e., Republic of Congo, 3.57 to 15.31; France, 0.45 to 3.72; USA, 0.22 to 4.25; Spain, 0.36 to 4.96; 65-70 & 85-90 cohorts respectively). There were no sex differences in incidence rates in younger age groups (60-65). Among older age groups, however, women tended to have higher incidence rates than men, in some countries (Faroe Islands, Germany, Sweden, and USA).
CONCLUSION: Geographical differences in dementia incidence rates likely represent inherent variation among countries, beyond methodological considerations. We are working to expand the range of studies and regions for which we calculate dementia incidence rates. This involves the development of approaches to classify and harmonise incident dementia in studies lacking consensus diagnoses. Doing so will bolster LMIC representation.
RESEARCH DESIGN AND METHODS: The prevalence of diabetes, defined as self-reported or fasting glycemia ≥7 mmol/L, was documented in 119,666 adults from three high-income (HIC), seven upper-middle-income (UMIC), four lower-middle-income (LMIC), and four low-income (LIC) countries. Relationships between diabetes and its risk factors within these country groupings were assessed using multivariable analyses.
RESULTS: Age- and sex-adjusted diabetes prevalences were highest in the poorer countries and lowest in the wealthiest countries (LIC 12.3%, UMIC 11.1%, LMIC 8.7%, and HIC 6.6%; P < 0.0001). In the overall population, diabetes risk was higher with a 5-year increase in age (odds ratio 1.29 [95% CI 1.28-1.31]), male sex (1.19 [1.13-1.25]), urban residency (1.24 [1.11-1.38]), low versus high education level (1.10 [1.02-1.19]), low versus high physical activity (1.28 [1.20-1.38]), family history of diabetes (3.15 [3.00-3.31]), higher waist-to-hip ratio (highest vs. lowest quartile; 3.63 [3.33-3.96]), and BMI (≥35 vs. <25 kg/m(2); 2.76 [2.52-3.03]). The relationship between diabetes prevalence and both BMI and family history of diabetes differed in higher- versus lower-income country groups (P for interaction < 0.0001). After adjustment for all risk factors and ethnicity, diabetes prevalences continued to show a gradient (LIC 14.0%, LMIC 10.1%, UMIC 10.9%, and HIC 5.6%).
CONCLUSIONS: Conventional risk factors do not fully account for the higher prevalence of diabetes in LIC countries. These findings suggest that other factors are responsible for the higher prevalence of diabetes in LIC countries.
METHODS: In this large-scale prospective cohort study, we recruited adults aged between 35 years and 70 years from 367 urban and 302 rural communities in 20 countries. We collected data on families and households in two questionnaires, and data on cardiovascular risk factors in a third questionnaire, which was supplemented with physical examination. We assessed socioeconomic status using education and a household wealth index. Education was categorised as no or primary school education only, secondary school education, or higher education, defined as completion of trade school, college, or university. Household wealth, calculated at the household level and with household data, was defined by an index on the basis of ownership of assets and housing characteristics. Primary outcomes were major cardiovascular disease (a composite of cardiovascular deaths, strokes, myocardial infarction, and heart failure), cardiovascular mortality, and all-cause mortality. Information on specific events was obtained from participants or their family.
FINDINGS: Recruitment to the study began on Jan 12, 2001, with most participants enrolled between Jan 6, 2005, and Dec 4, 2014. 160 299 (87·9%) of 182 375 participants with baseline data had available follow-up event data and were eligible for inclusion. After exclusion of 6130 (3·8%) participants without complete baseline or follow-up data, 154 169 individuals remained for analysis, from five low-income, 11 middle-income, and four high-income countries. Participants were followed-up for a mean of 7·5 years. Major cardiovascular events were more common among those with low levels of education in all types of country studied, but much more so in low-income countries. After adjustment for wealth and other factors, the HR (low level of education vs high level of education) was 1·23 (95% CI 0·96-1·58) for high-income countries, 1·59 (1·42-1·78) in middle-income countries, and 2·23 (1·79-2·77) in low-income countries (pinteraction<0·0001). We observed similar results for all-cause mortality, with HRs of 1·50 (1·14-1·98) for high-income countries, 1·80 (1·58-2·06) in middle-income countries, and 2·76 (2·29-3·31) in low-income countries (pinteraction<0·0001). By contrast, we found no or weak associations between wealth and these two outcomes. Differences in outcomes between educational groups were not explained by differences in risk factors, which decreased as the level of education increased in high-income countries, but increased as the level of education increased in low-income countries (pinteraction<0·0001). Medical care (eg, management of hypertension, diabetes, and secondary prevention) seemed to play an important part in adverse cardiovascular disease outcomes because such care is likely to be poorer in people with the lowest levels of education compared to those with higher levels of education in low-income countries; however, we observed less marked differences in care based on level of education in middle-income countries and no or minor differences in high-income countries.
INTERPRETATION: Although people with a lower level of education in low-income and middle-income countries have higher incidence of and mortality from cardiovascular disease, they have better overall risk factor profiles. However, these individuals have markedly poorer health care. Policies to reduce health inequities globally must include strategies to overcome barriers to care, especially for those with lower levels of education.
FUNDING: Full funding sources are listed at the end of the paper (see Acknowledgments).
RESEARCH DESIGN AND METHODS: The Prospective Urban Rural Epidemiology (PURE) study enrolled 143,567 adults aged 35-70 years from 4 high-income countries (HIC), 12 middle-income countries (MIC), and 5 low-income countries (LIC). The mean follow-up was 9.0 ± 3.0 years.
RESULTS: Among those with diabetes, CVD rates (LIC 10.3, MIC 9.2, HIC 8.3 per 1,000 person-years, P < 0.001), all-cause mortality (LIC 13.8, MIC 7.2, HIC 4.2 per 1,000 person-years, P < 0.001), and CV mortality (LIC 5.7, MIC 2.2, HIC 1.0 per 1,000 person-years, P < 0.001) were considerably higher in LIC compared with MIC and HIC. Within LIC, mortality was higher in those in the lowest tertile of wealth index (low 14.7%, middle 10.8%, and high 6.5%). In contrast to HIC and MIC, the increased CV mortality in those with diabetes in LIC remained unchanged even after adjustment for behavioral risk factors and treatments (hazard ratio [95% CI] 1.89 [1.58-2.27] to 1.78 [1.36-2.34]).
CONCLUSIONS: CVD rates, all-cause mortality, and CV mortality were markedly higher among those with diabetes in LIC compared with MIC and HIC with mortality risk remaining unchanged even after adjustment for risk factors and treatments. There is an urgent need to improve access to care to those with diabetes in LIC to reduce the excess mortality rates, particularly among those in the poorer strata of society.
METHOD: This international multi-center prospective study across 137 hospitals in 41 countries included patients who underwent an esophagectomy for esophageal cancer, with 90-day follow-up. The main explanatory variable was country income, defined according to the World Bank Data classification. The primary outcome was 90-day postoperative mortality, and secondary outcomes were composite leaks (anastomotic leak or conduit necrosis) and major complications (Clavien-Dindo Grade III - V). Multivariable generalized estimating equation models were used to produce adjusted odds ratios (ORs) and 95% confidence intervals (CI95%).
RESULTS: Between April 2018 to December 2018, 2247 patients were included. Patients from HIC were more significantly older, with higher ASA grade, and more advanced tumors. Patients from LMIC had almost three-fold increase in 90-day mortality, compared to HIC (9.4% vs 3.7%, p
OBJECTIVE: To determine levels and trends in the fatal and nonfatal burden of diseases and injuries among younger children (aged <5 years), older children (aged 5-9 years), and adolescents (aged 10-19 years) between 1990 and 2013 in 188 countries from the Global Burden of Disease (GBD) 2013 study.
EVIDENCE REVIEW: Data from vital registration, verbal autopsy studies, maternal and child death surveillance, and other sources covering 14,244 site-years (ie, years of cause of death data by geography) from 1980 through 2013 were used to estimate cause-specific mortality. Data from 35,620 epidemiological sources were used to estimate the prevalence of the diseases and sequelae in the GBD 2013 study. Cause-specific mortality for most causes was estimated using the Cause of Death Ensemble Model strategy. For some infectious diseases (eg, HIV infection/AIDS, measles, hepatitis B) where the disease process is complex or the cause of death data were insufficient or unavailable, we used natural history models. For most nonfatal health outcomes, DisMod-MR 2.0, a Bayesian metaregression tool, was used to meta-analyze the epidemiological data to generate prevalence estimates.
FINDINGS: Of the 7.7 (95% uncertainty interval [UI], 7.4-8.1) million deaths among children and adolescents globally in 2013, 6.28 million occurred among younger children, 0.48 million among older children, and 0.97 million among adolescents. In 2013, the leading causes of death were lower respiratory tract infections among younger children (905.059 deaths; 95% UI, 810,304-998,125), diarrheal diseases among older children (38,325 deaths; 95% UI, 30,365-47,678), and road injuries among adolescents (115,186 deaths; 95% UI, 105,185-124,870). Iron deficiency anemia was the leading cause of years lived with disability among children and adolescents, affecting 619 (95% UI, 618-621) million in 2013. Large between-country variations exist in mortality from leading causes among children and adolescents. Countries with rapid declines in all-cause mortality between 1990 and 2013 also experienced large declines in most leading causes of death, whereas countries with the slowest declines had stagnant or increasing trends in the leading causes of death. In 2013, Nigeria had a 12% global share of deaths from lower respiratory tract infections and a 38% global share of deaths from malaria. India had 33% of the world's deaths from neonatal encephalopathy. Half of the world's diarrheal deaths among children and adolescents occurred in just 5 countries: India, Democratic Republic of the Congo, Pakistan, Nigeria, and Ethiopia.
CONCLUSIONS AND RELEVANCE: Understanding the levels and trends of the leading causes of death and disability among children and adolescents is critical to guide investment and inform policies. Monitoring these trends over time is also key to understanding where interventions are having an impact. Proven interventions exist to prevent or treat the leading causes of unnecessary death and disability among children and adolescents. The findings presented here show that these are underused and give guidance to policy makers in countries where more attention is needed.