Displaying all 6 publications

Abstract:
Sort:
  1. Suleman M, Khan TA, Ejaz H, Maroof S, Alshammari A, Albekairi NA, et al.
    Microb Pathog, 2024 Apr;189:106572.
    PMID: 38354987 DOI: 10.1016/j.micpath.2024.106572
    The JCV (John Cunningham Virus) is known to cause progressive multifocal leukoencephalopathy, a condition that results in the formation of tumors. Symptoms of this condition such as sensory defects, cognitive dysfunction, muscle weakness, homonosapobia, difficulties with coordination, and aphasia. To date, there is no specific and effective treatment to completely cure or prevent John Cunningham polyomavirus infections. Since the best way to control the disease is vaccination. In this study, the immunoinformatic tools were used to predict the high immunogenic and non-allergenic B cells, helper T cells (HTL), and cytotoxic T cells (CTL) epitopes from capsid, major capsid, and T antigen proteins of JC virus to design the highly efficient subunit vaccines. The specific immunogenic linkers were used to link together the predicted epitopes and subjected to 3D modeling by using the Robetta server. MD simulation was used to confirm that the newly constructed vaccines are stable and properly fold. Additionally, the molecular docking approach revealed that the vaccines have a strong binding affinity with human TLR-7. The codon adaptation index (CAI) and GC content values verified that the constructed vaccines would be highly expressed in E. coli pET28a (+) plasmid. The immune simulation analysis indicated that the human immune system would have a strong response to the vaccines, with a high titer of IgM and IgG antibodies being produced. In conclusion, this study will provide a pre-clinical concept to construct an effective, highly antigenic, non-allergenic, and thermostable vaccine to combat the infection of the John Cunningham virus.
    Matched MeSH terms: Epitopes, T-Lymphocyte/genetics
  2. Nguyen Thi le T, Sarmiento ME, Calero R, Camacho F, Reyes F, Hossain MM, et al.
    Tuberculosis (Edinb), 2014 Sep;94(5):475-81.
    PMID: 25034135 DOI: 10.1016/j.tube.2014.06.004
    The most important targets for vaccine development are the proteins that are highly expressed by the microorganisms during infection in-vivo. A number of Mycobacterium tuberculosis (Mtb) proteins are also reported to be expressed in-vivo at different phases of infection. In the present study, we analyzed multiple published databases of gene expression profiles of Mtb in-vivo at different phases of infection in animals and humans and selected 38 proteins that are highly expressed in the active, latent and reactivation phases. We predicted T- and B-cell epitopes from the selected proteins using HLAPred for T-cell epitope prediction and BCEPred combined with ABCPred for B-cell epitope prediction. For each selected proteins, regions containing both T- and B-cell epitopes were identified which might be considered as important candidates for vaccine design against tuberculosis.
    Matched MeSH terms: Epitopes, T-Lymphocyte/genetics*
  3. Fong MY, Ahmed MA, Wong SS, Lau YL, Sitam F
    PLoS One, 2015;10(9):e0137734.
    PMID: 26379157 DOI: 10.1371/journal.pone.0137734
    Plasmodium knowlesi is a simian malaria parasite that has been identified to cause malaria in humans. To date, several thousand cases of human knowlesi malaria have been reported around Southeast Asia. Thus far, there is no detailed study on genetic diversity and natural selection of P. knowlesi circumsporozoite protein (CSP), a prominent surface antigen on the sporozoite of the parasite. In the present study, the genetic diversity and natural selection acting on the nonrepeat regions of the gene encoding P. knowlesi CSP were investigated, focusing on the T-cell epitope regions at the C-terminal of the protein.
    Matched MeSH terms: Epitopes, T-Lymphocyte/genetics*
  4. Ravichandran M, Doolan DL, Cox-Singh J, Hoffman SL, Singh B
    Parasite Immunol., 2000 Sep;22(9):469-73.
    PMID: 10972854
    Considerable effort is directed at the development of a malaria vaccine that elicits antigen-specific T-cell responses against pre-erythrocytic antigens of Plasmodium falciparum. Genetic restriction of host T-cell responses and polymorphism of target epitopes on parasite antigens pose obstacles to the development of such a vaccine. Liver stage-specific antigen-1 (LSA-1) is a prime candidate vaccine antigen and five T-cell epitopes that are degenerately restricted by HLA molecules common in most populations have been identified on LSA-1. To define the extent of polymorphism within these T-cell epitopes, the N-terminal non-repetitive region of the LSA-1 gene from Malaysian P. falciparum field isolates was sequenced and compared with data of isolates from Brazil, Kenya and Papua New Guinea. Three of the T-cell epitopes were completely conserved while the remaining two were highly conserved in the isolates examined. Our findings underscore the potential of including these HLA-degenerate T-cell epitopes of LSA-1 in a subunit vaccine.
    Matched MeSH terms: Epitopes, T-Lymphocyte/genetics*
  5. Lim HX, Lim J, Poh CL
    Med Microbiol Immunol, 2021 Feb;210(1):1-11.
    PMID: 33515283 DOI: 10.1007/s00430-021-00700-x
    Dengue virus (DENV) comprises four serotypes (DENV1-4) which cause 390 million global infections with 500,000 hospitalizations and 25,000 fatalities annually. Currently, the only FDA approved DENV vaccine is the chimeric live-attenuated vaccine, Dengvaxia®, which is based on the yellow fever virus (YFV) genome that carries the prM and E genes of the respective DENV 1, 2, 3, and 4 serotypes. However, it has lower efficacies against serotypes DENV1 (51%) and DENV2 (34%) when compared with DENV3 (75%) and DENV4 (77%). The absence of T cell epitopes from non-structural (NS) and capsid (C) proteins of the yellow fever vaccine strain might have prevented Dengvaxia® to elicit robust cellular immune responses, as CD8+ T cell epitopes are mainly localized in the NS3 and NS5 regions. Multi-epitope-based peptide vaccines carrying CD4+, CD8+ T cell and B cell epitopes represent a novel approach to generate specific immune responses. Therefore, assessing and selecting epitopes that can induce robust B and T cell responses is a prerequisite for constructing an efficient multi-epitope peptide vaccine. Potent B and T cell epitopes can be identified by utilizing immunoinformatic analysis, but the immunogenicity of the epitopes have to be experimentally validated. In this review, we presented T cell epitopes that have been predicted by bioinformatic approaches as well as recent experimental validations of CD4+ and CD8+ T cell epitopes by ex-vivo stimulation of PBMCs with specific peptides. Immunoproteomic analysis could be utilized to uncover HLA-specific epitopes presented by DENV-infected cells. Based on various approaches, immunodominant epitopes capable of inducing strong immune responses could be selected and incorporated to form a universally applicable multi-epitope-based peptide dengue vaccine.
    Matched MeSH terms: Epitopes, T-Lymphocyte/genetics
  6. Ooi JD, Jiang JH, Eggenhuizen PJ, Chua LL, van Timmeren M, Loh KL, et al.
    Nat Commun, 2019 07 29;10(1):3392.
    PMID: 31358739 DOI: 10.1038/s41467-019-11255-0
    Autoreactivity to myeloperoxidase (MPO) causes anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV), with rapidly progressive glomerulonephritis. Here, we show that a Staphylococcus aureus peptide, homologous to an immunodominant MPO T-cell epitope (MPO409-428), can induce anti-MPO autoimmunity. The peptide (6PGD391-410) is part of a plasmid-encoded 6-phosphogluconate dehydrogenase found in some S. aureus strains. It induces anti-MPO T-cell autoimmunity and MPO-ANCA in mice, whereas related sequences do not. Mice immunized with 6PGD391-410, or with S. aureus containing a plasmid expressing 6PGD391-410, develop glomerulonephritis when MPO is deposited in glomeruli. The peptide induces anti-MPO autoreactivity in the context of three MHC class II allomorphs. Furthermore, we show that 6PGD391-410 is immunogenic in humans, as healthy human and AAV patient sera contain anti-6PGD and anti-6PGD391-410 antibodies. Therefore, our results support the idea that bacterial plasmids might have a function in autoimmune disease.
    Matched MeSH terms: Epitopes, T-Lymphocyte/genetics
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links