Royal jelly is widely consumed in the community and has perceived benefits ranging from promoting growth in children and improvement of general health status to enhancement of longevity for the elderly. However, royal jelly consumption has been linked to contact dermatitis, acute asthma, anaphylaxis and death. High prevalence of positive skin tests to royal jelly have been reported among atopic populations in countries with a high rate of royal jelly consumption. The present study is aimed to identify the major allergens of royal jelly. Royal jelly extract was separated by sodium dodecyl polyacrylamide gel electrophoresis (SDS-PAGE) and 2-dimensional electrophoresis (2-D). Immunoblotting of the SDS-PAGE and 2-D profiles were performed to identify the allergenic spots. Spots were then excised from the 2-D gel, digested with trypsin and analyzed by mass spectrometry. The SDS-PAGE of royal jelly extract revealed 18 bands between 10 to 167 kD. Western blot of the fractionated proteins detected 15 IgE-binding bands between 14 to 127 kD with seven major allergens of 32, 40, 42, 49, 55, 60 and 67 kD using serum from 53 subjects with royal jelly allergy. The 2-D gel fractionated the royal jelly proteins to more than 50 different protein spots. Out of these, 30 spots demonstrated specific IgE affinity to the sera tested. Eight spots of the major royal jelly allergens were selected for mass-spectrometry analysis. Digested tryptic peptides of the spots were compared to the amino acid sequence search in protein databases which identified the fragments of royal jelly homologus to major royal jelly protein 1 (MRJ1) and major royal jelly protein 2 (MRJ2). In conclusion, the major allergens of royal jelly are MRJ1 and MRJ2 in our patients' population.
Rheumatoid arthritis (RA) is the most common chronic systemic autoimmune disease worldwide. Although incurable, there are available therapies to effectively control the disease activity and minimize the joint damage. Numerous cytokines, enzymes and other forms of proteins have been implicated in the disease process of RA. In general, pharmacological therapies in RA target cytokine pathways. Despite a wide variety of disease modifying antirheumatic drugs (DMARD), a significant proportion of patients remain refractory to the available therapies. Hence, the search for newer drugs with different modes of actions is an ongoing process. The present review aimed to explore novel therapeutic targets in RA based on data from the literature. Inhibitors of spleen tyrosine kinase, choline kinase, galectin 3 and hypoxia-inducible factor may have a promising role in the
Allergy to different classes of mollusks, including squid, which are members of the class Cephalopods has been reported. Tropomyosin, a major muscle protein, is the only well-recognized allergen in squid. The aim of this study was to characterize IgE-binding proteins of local Loligo edulis (white squid) consumed in Malaysia. Protein profiles and IgE-binding proteins were detected by sodium dodecyl sulfate-polyacrylamide gel-electrophoresis (SDS-PAGE) and immunoblotting using sera from 23 patients with positive skin prick test to raw squid extract. SDS-PAGE of the raw extract exhibited 21 protein bands (10-170 kDa) but those ranging from 19 to 29 kDa and 41 to 94 kDa were not found in the cooked extract. Immunoblotting of raw extract demonstrated 16 IgE-binding bands, ranging from 13 to 170 kDa. A heat-resistant 36 kDa protein, corresponding to squid tropomyosin, was identified as the major allergen of both extracts. In addition, a 50 kDa heat-sensitive protein was shown to be a major allergen of the raw extract. Our findings indicate that the allergen extract used for diagnosis of squid allergy should contain both the 36 kDa and 50 kDa proteins.
INTRODUCTION: Galectin-3 is a member of the beta-galactoside-binding protein family that plays an important role in cell-to-cell adhesion and in cell-to-matrix interaction. Cellular expression of galectin-3 is correlated with cancer aggressiveness and metastasis.
METHODS: We examined the differential expression of galectin-3 in a collection of 142 cases of thyroid lesions, including 108 cases of papillary thyroid carcinoma (PTC) and 34 cases of follicular carcinoma (FCA). An immunohistochemical method was applied and semiquantitative scoring was performed on the staining intensity of the positive tissue. Scoring was done on cells at the central portion of the tumour foci and on cells at the periphery that were adjacent to the neighbouring normal thyroid tissue matrix.
RESULTS: A significantly higher expression (p is 0.001) of galectin-3 was observed in the advancing peripheral thyroid cancer cells compared to the centrally located cells that were not in close contact with the neighbouring stromal tissue in cases with PTC compared to those with FCA.
CONCLUSION: This finding supported the role of galectin-3 in its cell-to-cell adhesion and cell-to-matrix interaction. Galectin-3 is a potential tumour marker for indicating local and distance metastasis, especially in cases with PTC.
The purpose of this study was to evaluate the effect of different cooking methods on the allergenicity of cockle and to identify proteins most frequently bound by IgE antibodies using a proteomics approach. Raw, boiled, fried and roasted extracts of the cockle were prepared. The protein profiles of the extracts were obtained by separation using sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and 2-dimensional gel electrophoresis (2-DE). IgE-immunoblotting was then performed with the use of individual sera from patients with cockle allergy and the major IgE-binding proteins were analyzed by mass-spectrometry. SDS-PAGE of raw extract showed 13 protein bands. Smaller numbers of protein bands were detected in the boiled, fried and roasted extracts. The 2-DE gel profile of the raw extract further separated the protein bands to ~50 protein spots with molecular masses between 13 to 180 kDa and isoelectric point (pI) values ranging from 3 to 10. Immunoblotting of raw extract exhibited 11 IgE-binding proteins with two proteins of 36 and 40 kDa as the major IgE-binding proteins, while the boiled extract revealed 3 IgE-binding proteins. Fried and roasted extracts only showed a single IgE-binding protein at 36 kDa. 2-DE immunoblotting of raw extract demonstrated 5 to 20 IgE reactive spots. Mass spectrometry analysis led to identification of 2 important allergens, tropomyosin (36 kDa) and arginine kinase (40 kDa). Heated extracts showed a reduction in the number of IgE-reactive bands compared with raw extract, which suggest that thermal treatment can be used as a tool in attempting to reduce cockle allergenicity. The degree of allergenicity of cockle was demonstrated in the order raw > boiled > fried ≈ roasted. Two important allergens reacting with more than 50% of patients' sera identified using mass spectrometric approaches were tropomyosin and arginine kinase. Thus, allergens found in this study would help in component based diagnosis, management of cockle allergic patients and to the standardisation of allergenic test products as tools in molecular allergology.
Simulium dermatitis is an IgE-mediated skin reaction in animals and humans caused by the bites of black flies. Although Simulium nigrogilvum has been incriminated as the main human-biting black fly species in Thailand, information on its salivary allergens is lacking. Salivary gland extract of S. nigrogilvum females was subjected to sodium dodecylsulfate-polyacrylamide gel electrophoresis, and the separated components were applied onto nitrocellulose membranes for immunoblotting, which was performed by probing the protein blots with sera from 17 individuals who were allergic to the bites of S. nigrogilvum. IgE-reactive protein bands were characterized further by liquid chromatography-mass spectrometry (LC-MS/MS) analysis. Nine protein bands (79, 42, 32, 25, 24, 22, 15, 13, and 11 kDa) were recognized in the serum of the subjects. Four of the nine protein bands (32, 24, 15, and 11 kDa) showed IgE reactivity in all (100%) of the tested sera, and they were identified as salivary secreted antigen 5-related protein, salivary serine protease, erythema protein, and hypothetical secreted protein, respectively. Three other proteins, salivary serine protease (25 kDa), salivary D7 secreted protein (22 kDa), and hypothetical protein (13 kDa), reacted with > 50% of the sera. The relevance of the identified protein bands as allergens needs to be confirmed by using pure recombinant proteins, either in the in vivo skin prick test or in vitro detection of the specific IgE in the serum samples of allergic subjects. This will be useful for the rational design of component-resolved diagnosis and allergen immunotherapy for the allergy mediated by the bites of black flies.
The objective of this study was to determine the Immunoglobulin E-binding proteins (IgE) and major allergens of Scomberomorus commerson Lacepede (Narrow-barred Spanish mackerel). Allergen extracts were obtained from uncooked and cooked fish by homogenization in phosphate-buffered saline followed by continuous extraction at 4oC or on ice. Protein profiles and IgEbinding patterns were then detected by means of sodium dodecyl polyacrylamide gel electrophoresis (SDS PAGE) and immunoblotting using sera from patients sensitized to the fish. SDS-PAGE of the uncooked fish extracts revealed 26 protein bands in the range of about 11 to >175 kD, while the cooked extracts produced fewer protein bands. Immunoblotting demonstrated 17 IgE-binding bands, ranging in molecular weight from 11 to 151 kD. Two components with molecular weight of about ~50 and 42 kD showed the highest frequency of IgE-binding (62.2 and 51.4% respectively) and were identified as the major allergens of this fish allergy. Other IgE-binding proteins including a protein at ~12 kD which was equivalent in size to parvalbumin were identified as the minor allergens.
Heart failure (HF) is a serious disease syndrome characterized by elevated pro-inflammatory cytokines and inflammatory mediators presume to have significant contribution on disease progression. Galectins are carbohydrate-binding proteins responsible of various physiological functions. Role of galectins in heart failure has been ill-defined. In the present case-controls study, 136 patients clinically diagnosed with heart failure and 125 healthy Chinese controls were recruited. Levels of galectins (Gal-1, 3 and 9) and cytokines (IFN-γ, IL-17A, IL-4 and TGF-β) were quantified by ELISA. Increased levels of galectin-1 and 3 was observed in HF patients and associated with clinical severity. In addition, pro-inflammatory cytokines such as IFN-γ and IL-17A were increased in patients whereas, anti-inflammatory TGFβ was decreased. Galectin-3 was positively correlated with IFN-γ, IL-17A and inversely with TGF-β. Furthermore, ROC curve analysis suggested galectin-3 as a promising biomarker for diagnosis and HF and clinical severity. Interestingly, a two-year follow-up indicated significant association of elevated galectin-3 with mortality due to HF. In conclusion, galectin-3 associated with HF and clinical manifestations possibly by inducing pro-inflammatory cytokines and could be a possible biomarker of HF and severe clinical conditions.
It has been suggested that Galectin-3 (Gal-3) and Galectin-7 (Gal-7) are potential tumour markers for differentiating thyroid carcinoma from its benign counter part. Galectins are beta-galactoside-binding proteins with Gal-3 being a redundant pre-mRNA splicing factor. They are supposed to be p53-related regulators in cell growth and apoptosis, being either anti-apoptotic or pro-apoptotic. Although the value of Gal-3 has been studied extensively, there is little knowledge regarding the expression of Gal-7 in thyroid malignancy.
Crab meat is a valuable source of proteins and functional lipids and it is widely consumed worldwide. However, the prevalence of crab allergy has increased over the past few years. In order to understand crab allergy better, it is necessary to identify crab allergens. The aim of the present study was to compare the IgE-binding proteins of raw and cooked extracts of mud crab (Scylla serrata). Raw and cooked extracts of the mud crab were prepared. Protein profiles and IgE reactivity patterns were identified by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) followed by immunoblotting using sera from 21 skin prick test (SPT) positive patients. In SDS-PAGE, 20 protein bands (12 to 250 kDa) were observed in the raw extract while the cooked extract demonstrated fewer bands. Protein bands between 40 to 250 kDa were sensitive to heat denaturation and no longer observed in the cooked extract. In immunoblotting experiments, raw and cooked extracts demonstrated 11 and 4 IgE-binding proteins, respectively, with molecular weights of between 23 and 250 kDa. A heat-resistant 36 kDa protein, corresponding to crab tropomyosin was identified as the major allergen of both extracts. In addition, a 41 kDa heat-sensitive protein believed to be arginine kinase was shown to be a major allergen of the raw extract. Other minor allergens were also observed at various molecular weights.