Seven varieties of long bean, which included three local and four exotic, were crossed in a complete diallel. This was an attempt to study the inheritance of crude protein content, protein yield, flowering date, pod yield and yield components.Both additive and non-additive gene effects were responsible for the genetic variation in the diallel population. However, dominance variance was more important than additive variance in crude protein content, number of pods per plant and number of seeds per pod. For seed weight and pod length, additive variance was more important.The crude protein content, protein yield and number of pods per plant appeared to be controlled by overdominance effects. Partial dominance seemed to be the case for flowering date, pod length and seed weight; complete to overdominance for pod yield. High protein appeared to be associated with recessive genes whereas there was a general trend of high yielding parents carrying more dominant genes.
1. Three cases of situs inversus are described and the clinical and aetiological factors are discussed briefly.
2. This abnormality occurring in father and son whose family history indicates a great degree of consaguinity seems to support the view held by Cockayne that it is a recessive inheritance.
3. Situs inversus when complete seems to cause no disability. When incomplete as in examples of isolated dextrocardia, congenital heart diseases are commonly seen in association with it. Other congenital malformations may also co-exist. Recently the syndrome of hypertrophic rhinitis, nasal polyposis and sinusitis and bronchiectasis have been encountered in association with transposition of the viscera.
To determine the frequency and type of gap junction protein beta-2 gene mutations in Malay patients with autosomal recessive, non-syndromic hearing loss.
We have previously demonstrated that compound heterozygous (SAO/G701D) and homozygous (G701D/G701D) mutations of the anion exchanger 1 (AE1) gene, encoding erythroid and kidney AE1 proteins, cause autosomal recessive distal renal tubular acidosis (AR dRTA) in Thai patients. It is thus of interest to examine the prevalence of these mutations in the Thai population. The SAO and G701D mutations were examined in 844 individuals from north, northeast, central, and south Thailand. Other reported mutations including R602H, DeltaV850, and A858D were also examined in some groups of subjects. The SAO mutation was common in the southern Thai population; its heterozygote frequency was 7/206 and estimated allele frequency 1.70%. However, this mutation was not observed in populations of three other regions of Thailand. In contrast, the G701D mutation was not found in the southern population but was observed in the northern, northeastern, and central populations, with heterozygote frequencies of 1/216, 3/205, and 1/217, and estimated allele frequencies of 0.23%, 0.73%, and 0.23%, respectively. The higher allele frequency of the G701D mutation in the northeastern Thai population corresponds to our previous finding that all Thai patients with AR dRTA attributable to homozygous G701D mutation originate from this population. This suggests that the G701D allele that is observed in this region might arise in northeastern Thailand. The presence of patients with compound heterozygous SAO/G701D in southern Thailand and Malaysia and their apparently absence in northeastern Thailand indicate that the G701D allele may have migrated to the southern peninsular region where SAO is common, resulting in pathogenic allelic interaction.
Resistance to the bacteria-derived insecticides spinosad (Conserve), abamectin (Vertimec), Bacillus thuringiensis var kurstaki (Btk) (Dipel), B thuringiensis var aizawai (Bta) (Xentari), B thuringiensis crystal endotoxins Cry1Ac and Cry1Ca, and to the synthetic insecticide fipronil was estimated in a freshly-collected field population (CH1 strain) of Plutella xylostella (L) from the Cameron Highlands, Malaysia. Laboratory bioassays at G1 indicated significant levels of resistance to spinosad, abamectin, Cry1Ac, Btk, Cry1Ca, fipronil and Bta when compared with a laboratory insecticide-susceptible population. Logit regression analysis of F1 reciprocal crosses indicated that resistance to spinosad in the CH1 population was inherited as a co-dominant trait. At the highest dose of spinosad tested, resistance was close to completely recessive, while at the lowest dose it was incompletely dominant. A direct test of monogenic inheritance based on a back-cross of F1 progeny with CH1 suggested that resistance to spinosad was controlled by a single locus.
Hearing loss is a common sensory deficit in humans. The hearing loss may be conductive, sensorineural, or mixed, syndromic or nonsyndromic, prelingual or postlingual. Due to the complexity of the hearing mechanism, it is not surprising that several hundred genes might be involved in causing hereditary hearing loss. There are at least 82 chromosomal loci that have been identified so far which are associated with the most common type of deafness--non-syndromic deafness. However, there are still many more which remained to be discovered. Here, we report the mapping of a locus for autosomal recessive, non-syndromic deafness in a family in Malaysia. The investigated family (AC) consists of three generations--parents who are deceased, nine affected and seven unaffected children and grandchildren. The deafness was deduced to be inherited in an autosomal recessive manner with 70% penetrance. Recombination frequencies were assumed to be equal for both males and females. Using two-point lod score analysis (MLINK), a maximum lod score of 2.48 at 0% recombinant (Z = 2.48, theta = 0%) was obtained for the interval D14S63-D14S74. The haplotype analysis defined a 14.38 centiMorgan critical region around marker D14S258 on chromosome 14q23.2-q24.3. There are 16 candidate genes identified with positive expression in human cochlear and each has great potential of being the deaf gene responsible in causing non-syndromic hereditary hearing loss in this particular family. Hopefully, by understanding the role of genetics in deafness, early interventional strategies can be undertaken to improve the life of the deaf community.
Type I interferon (IFN-α/β) is a fundamental antiviral defense mechanism. Mouse models have been pivotal to understanding the role of IFN-α/β in immunity, although validation of these findings in humans has been limited. We investigated a previously healthy child with fatal encephalitis after inoculation of the live attenuated measles, mumps, and rubella (MMR) vaccine. By targeted resequencing, we identified a homozygous mutation in the high-affinity IFN-α/β receptor (IFNAR2) in the proband, as well as a newborn sibling, that rendered cells unresponsive to IFN-α/β. Reconstitution of the proband's cells with wild-type IFNAR2 restored IFN-α/β responsiveness and control of IFN-attenuated viruses. Despite the severe outcome of systemic live vaccine challenge, the proband had previously shown no evidence of heightened susceptibility to respiratory viral pathogens. The phenotype of IFNAR2 deficiency, together with similar findings in STAT2-deficient patients, supports an essential but narrow role for IFN-α/β in human antiviral immunity.
Anopheles gambiae females are the world's most successful vectors of human malaria. However, a fraction of these mosquitoes is refractory to Plasmodium development. L3-5, a laboratory selected refractory strain, encapsulates transforming ookinetes/early oocysts of a wide variety of Plasmodium species. Previous studies on these mosquitoes showed that one major (Pen1) and two minor (Pen2, Pen3) autosomal dominant quantitative trait loci (QTLs) control the melanotic encapsulation response against P. cynomolgi B, a simian malaria originating in Malaysia.
Mutations of the AE1 (SLC4A1, Anion-Exchanger 1) gene that codes for band 3, the renal and red cell anion exchanger, are responsible for many cases of familial distal renal tubular acidosis (dRTA). In Southeast Asia this disease is usually recessive, caused either by homozygosity of a single AE1 mutation or by compound heterozygosity of two different AE1 mutations. We describe two unrelated boys in Sarawak with dRTA associated with compound heterozygosity of AE1 mutations. Both had Southeast Asian ovalocytosis (SAO), a morphological abnormality of red cells caused by a deletion of band 3 residues 400-408. In addition, one boy had a DNA sequence abnormality of band 3 residue (G701D), which has been reported from elsewhere in Southeast Asia. The other boy had the novel sequence abnormality of band 3 (Q759H) and profound hemolytic anemia.
Charcot-Marie-Tooth (CMT) disease is a form of inherited peripheral neuropathy that affects motor and sensory neurons. To identify the causative gene in a consanguineous family with autosomal recessive CMT (AR-CMT), we employed a combination of linkage analysis and whole exome sequencing. After excluding known AR-CMT genes, genome-wide linkage analysis mapped the disease locus to a 7.48-Mb interval on chromosome 14q32.11-q32.33, flanked by the markers rs2124843 and rs4983409. Whole exome sequencing identified two non-synonymous variants (p.T40P and p.H915Y) in the AHNAK2 gene that segregated with the disease in the family. Pathogenic predictions indicated that p.T40P is the likely causative allele. Analysis of AHNAK2 expression in the AR-CMT patient fibroblasts showed significantly reduced mRNA and protein levels. AHNAK2 binds directly to periaxin which is encoded by the PRX gene, and PRX mutations are associated with another form of AR-CMT (CMT4F). The altered expression of mutant AHNAK2 may disrupt the AHNAK2-PRX interaction in which one of its known functions is to regulate myelination.