Barnacles are ubiquitous in coastal ecosystems of different geographical regions worldwide. This is the first study attempting to assess the suitability of barnacles as bioindicators of persistent organic pollutants (POPs) in coastal environments. Barnacles were collected from the coasts around Peninsular Malaysia and analyzed for POPs including polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs) and organochlorine pesticides (OCPs). Among POPs, PCBs showed the highest concentrations with elevated contributions of CB28 and CB153. As for PBDEs, BDE47 was the most frequently detected congener, while BDE209 was detected in barnacles from two stations in Port Klang and the levels reached up to >70% of total PBDE concentrations. Concentrations of OCPs detected in barnacles were in the order of CHLs > DDTs > HCHs > HCB and 4,4'-DDE and cis- and trans-chlordane were the predominant OCP compounds. A comparison with previous studies in Malaysia showed consistent levels of POPs. Green mussels collected from selected barnacles' habitats, for the sake of a comparison, showed almost similar profiles but lower concentrations of POPs. The spatial distribution of POPs observed in barnacles and comparison of POP levels and profiles with mussels indicated that barnacles can be useful bioindicators for monitoring POPs contamination in the coastal ecosystems.
Malaysia is a developing country in Southeast Asia, with rapid industrial and economic growth. Speedy population growth and aggressive consumerism in the past five decades have resulted in environmental pollution issues, including products containing polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs). PCBs and PBDEs are classified as persistent organic pollutants (POPs) by the Stockholm Convention due to their persistence, bioaccumulation in the environment and toxicity to humans and wildlife. These compounds are known to cause liver dysfunction, thyroid toxicity, developmental neuro-toxicity and possibly cancer. PCBs in air, mussels, pellets, seawater, fresh water, and human breast milk samples were analyzed in Malaysia, while studies on the pollution level of PBDEs in Malaysia were conducted on mussels, soils, leachate and sediment samples. PCBs in breast milk collected from Malaysia was the highest among Asian developing countries, with mean concentration of 80 ng/g lipid weight. On the other hand, the mean concentration of PCBs in mussels collected from Malaysia recorded the second lowest, with 56 ng/g and 89 ng/g lipid weight in two studies respectively. The concentrations of PBDEs in mussels taken from Malaysia fall in the range of 0.84-16 ng/g lipid weight, which is considerably low compared to 104.5 ng/g lipid weight in Philippines and 90.59 ng/g in Korea. Nevertheless, there are limited studies on these compounds in Malaysia, particularly there is no research on PBDEs in breast milk and sediment samples. This review will summarize the contamination levels of PCBs and PBDEs in different samples collected from Asian countries since 1988 until 2010 with a focus on Malaysia and will provide needed information for further research in this field.
Historical trends of the accumulation of polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) in a typical tropical Asian environment were investigated using radio-dated sediment cores from Manila Bay, the Philippines and from the upper Gulf of Thailand. Vertical profiles indicated earlier usage of PCBs than of PBDEs which coincided with their industrial production. The increasing concentrations of total PBDEs and PCBs toward the surface suggested an increased consumption of PBDEs; and possible leakage of PCBs from old machineries into the aquatic environment in recent years. Current input of PCBs to the catchment of Manila Bay was supported by the analyses of air samples and plastic resin pellets. The vertical profiles of total PBDEs in the cores (i.e., rapidly increasing concentrations corresponding to the mid-1980s until mid-1990s, followed by a decrease until the early 2000s, and increasing again toward the surface) likely corresponded to the rapid economic growth in Asia in the 1990s, the Asian financial crisis in 1997, and the economic recovery since early 2000s. BDE-209 was predominant especially on the surface layers. BDEs 47 and 99 generally decreased toward the surface, reflecting the phase-out of the technical penta-PBDE products and the regulation by the Stockholm Convention in recent years. Increasing ratios of BDE-202/209, 206/209, 207/209 and decreasing % of BDE-209 down the core layers may provide evidence for the anaerobic debromination of BDE-209 in the sediment cores. Inventories in ng/cm(2) of total PCBs were higher than total PBDEs (92 vs. 34 and 47 vs. 11 in the Philippines; 47 vs. 33 in Thailand). However, the doubling times indicated faster accumulation of total PBDEs (6-7 years) and BDE-209 (6-7.5 years) than of PCBs (8-11 years). Furthermore, the temporal increase in BDE-209 was comparable to or faster than those reported in other water bodies around the world.
Polybrominated diphenyl ethers (PBDEs) were measured in surface sediment samples collected from urban canals or rivers in Lao PDR, Cambodia, Vietnam, India, Indonesia, Thailand, the Philippines, Malaysia and Japan. The total PBDE concentrations in the sediments ranged from 0.83 to 3140 ng/g dry wt. BDE-209 was predominant, ranging from 43% to 97% of total PBDEs, followed by nona-BDEs and some detectable concentrations of BDEs 47, 49, 99, 100, 153, 154 and 183. Sedimentary PBDE levels in Malaysia, Cambodia, the Philippines and Thailand were generally higher than those reported for highly industrialized countries. Spatial distribution of PBDEs indicated that inland sources may impact coastal areas. The presence of BDE congeners which are not contained in technical mixtures and the higher proportions of nona-BDEs relative to BDE-209 in the sediments were identified as indicators of debromination. BDE-209 was possibly debrominated under anaerobic conditions in some of the sediment samples.
In Asian developing countries, large amounts of municipal wastes are dumped into open dumping sites each day without adequate management. This practice may cause several adverse environmental consequences and increase health risks to local communities. These dumping sites are contaminated with many chemicals including brominated flame retardants (BFRs) such as polybrominated diphenyl ethers (PBDEs) and hexabromocyclododecanes (HBCDs). BFRs may be released into the environment through production processes and through the disposal of plastics and electronic wastes that contain them. The purpose of this study was to elucidate the status of BFR pollution in municipal waste dumping sites in Asian developing countries. Soil samples were collected from six open waste dumping sites and five reference sites in Cambodia, India, Indonesia, Malaysia, and Vietnam from 1999 to 2007. The results suggest that PBDEs are the dominant contaminants in the dumping sites in Asian developing countries, whereas HBCD contamination remains low. Concentrations of PBDEs and HBCDs ranged from ND to 180 μg/kg dry wt and ND to 1.4 μg/kg dry wt, respectively, in the reference sites and from 0.20 to 430 μg/kg dry wt and ND to 2.5 μg/kg dry wt, respectively, in the dumping sites. Contamination levels of PBDEs in Asian municipal dumping sites were comparable with those reported from electronic waste dismantling areas in Pearl River delta, China.
Sea turtles are globally endangered and face daily anthropogenic threats, including pollution. However, there is a lack of ecotoxicological information on sea turtles, especially in the Asia-Pacific region. This study aims to determine pollutant levels of foraging green turtles (Chelonia mydas) in South China, including Hong Kong, Guangdong and Taiwan, as a basis for their conservation. Scute, liver and muscle tissues of stranded green turtles were analysed for levels of 17 trace elements and methylmercury (MeHg) (n = 86 for scute and n = 14 for liver) and polybrominated diphenyl ethers (PBDEs) (n = 11 for muscle and n = 13 for liver). Ten-fold higher levels of Pb, Ba, V and Tl and 40-fold greater Cd levels were measured in green turtle livers in South China relative to other studies conducted over 10 years ago. Measured PBDE levels were also 27-fold and 50-fold greater than those reported in Australia and Japan. These results warrant further investigation of potential toxicological risks to green turtles in South China and their source rookeries in Malaysia, Micronesia, Indonesia, Marshall Islands, Japan and Taiwan. Research should target monitoring pollutant levels in sea turtles within the West Pacific/Southeast Asia regional management unit spanning East Asia to Southeast Asia to fill in knowledge gaps, in particular in areas such as Thailand, Vietnam, Indonesia, Malaysia and the Philippines where less or no data is available and where foraging grounds of sea turtles have been identified.
Hexabromocyclododecanes (HBCDs), 1,2-bis(2,4,6-tribromophenoxy) ethane (BTBPE), and decabromodiphenyl ethane (DBDPE) used as alternatives for polybrominated diphenyl ethers (PBDEs) are also persistent in the environment as PBDEs. Limited information on these non-PBDE brominated flame retardants (BFRs) is available; in particular, there are only few publications on environmental pollution by these contaminants in the coastal waters of Asia. In this regard, we investigated the contamination status of HBCDs, BTBPE, and DBDPE in the coastal waters of Asia using mussels as a bioindicator. Concentrations of HBCDs, BTBPE, and DBDPE were determined in green (Perna viridis) and blue mussels (Mytilus edulis) collected from the coastal areas in Cambodia, China (mainland), SAR China (Hong Kong), India, Indonesia, Japan, Malaysia, the Philippines, and Vietnam on 2003-2008. BTBPE and DBDPE were analyzed using GC-MS, whereas HBCDs were determined by LC-MS/MS. HBCDs, BTBPE, and DBDPE were found in mussels at levels ranging from <0.01 to 1,400, <0.1 to 13, and <0.3 to 22 ng/g lipid wt, respectively. Among the three HBCD diastereoisomers, α-HBCD was the dominant isomer followed by γ- and β-HBCDs. Concentrations of HBCDs and DBDPE in mussels from Japan and Korea were higher compared to those from the other Asian countries, indicating extensive usage of these non-PBDE BFRs in Japan and Korea. Higher levels of HBCDs and DBDPE than PBDEs were detected in some mussel samples from Japan. The results suggest that environmental pollution by non-PBDE BFRs, especially HBCDs in Japan, is ubiquitous. This study provides baseline information on the contamination status of these non-PBDE BFRs in the coastal waters of Asia.
Polybrominated diphenyl ethers (PBDEs) are extensively used as flame retardants in many consumer products, and leachates from landfills have been identified as one of the possible sources of PBDEs in the environment. Meanwhile, the unprecedented economic and population growths of some Asian countries over the last decade have led to significant increases in the amount of waste containing PBDEs in that region. This study investigates the status of PBDEs in leachates from municipal solid waste dumping sites (MSWDS) in tropical Asian countries. A total of 46 PBDE congeners were measured, both in the adsorbed (n=24) and dissolved (n=16) phases, in leachate samples collected, from 2002 to 2010, from ten MSWDS distributed among the eight countries of Lao PDR, Cambodia, Vietnam, India, Indonesia, Thailand, the Philippines, and Malaysia. PBDEs were predominantly found in the adsorbed phase. Partitioning of PBDEs in the dissolved phase was associated with the presence of dissolved organic matter; the apparent organic carbon-normalized partition coefficients (K'oc) of the BDE congeners were lower by two to four orders of magnitude than the K oc predicted from the octanol-water partition coefficients (K ow). The total PBDE concentrations from mono- to deca-BDEs ranged from 3.7 to 133,000 ng/L, and showed a trend toward higher concentrations in the more populous and industrialized Asian countries. The congener profiles in the leachates basically reflected the composition of PBDE technical mixtures. The occurrence of congeners not contained, or in trace concentrations, in technical products (e.g., BDEs 208, 207, 206, 202, 188, 179, 49, 17/25, 8, 1) was observed in most of the leachate samples, suggesting the debromination of technical mixtures, including BDE-209, in the MSWDS of tropical Asian countries. Moreover, the temporal trend indicated the reduction of BDE-209 over time, with a corresponding increase in and/or emergence of lower brominated PBDE congeners. The results indicated that MSWDS of tropical Asian countries are potential sources of environmental PBDEs, which may be transported to the aquatic environment via dissolution with dissolved organic matter. MSWDS could be amplifiers of PBDE toxicity in the environment, possibly through debromination.
Mussel samples were used in this study to measure the levels of polybrominated diphenyl ethers (PBDEs) and organochlorines (OCs) in the coastal waters of Asian countries like Cambodia, China, Hong Kong, India, Indonesia, Japan, Korea, Malaysia, the Philippines, and Vietnam. PBDEs were detected in all the samples analyzed, and the concentrations ranged from 0.66 to 440 ng/g lipid wt. Apparently higher concentrations of PBDEs were found in mussels from the coastal waters of Korea, Hong Kong, China, and the Philippines, which suggests that significant sources of these chemicals exist in and around this region. With regard to the composition of PBDE congeners, BDE-47, BDE-99, and BDE-100 were the dominant congeners in most of the samples. Among the OCs analyzed, concentrations of DDTs were the highest followed by PCBs > CHLs > HCHs > HCB. Total concentrations of DDTs, PCBs, CHLs, and HCHs in mussel samples ranged from 21 to 58 000, 3.8 to 2000, 0.93 to 900, and 0.90 to 230 ng/g lipid wt., respectively. High levels of DDTs were found in mussels from Hong Kong, Vietnam, and China; PCBs were found in Japan, Hong Kong, and industrialized/urbanized locations in Korea, Indonesia, the Philippines, and India; CHLs were found in Japan and Hong Kong; HCHs were found in India and China. These countries seem to play a role as probable emission sources of corresponding contaminants in Asia and, in turn, may influence their global distribution.