Displaying publications 1 - 20 of 201 in total

Abstract:
Sort:
  1. Hii KS, Abdul Manaff AHN, Gu H, Lim PT, Leaw CP
    Mar Environ Res, 2024 Jul;199:106593.
    PMID: 38852495 DOI: 10.1016/j.marenvres.2024.106593
    The marine dinophyte Alexandrium tamiyavanichii is a toxigenic species that produces a group of neurotoxins that is responsible for paralytic shellfish poisoning in humans. Early detection of the species is essential for efficient monitoring. Harmful microalgal monitoring systems have evolved over the years with the advent of environmental DNA (eDNA)-based species detection techniques. In this study, eDNA samples were collected from a large-scale sampling covering the southern South China Sea. The sensitivity and specificity of metabarcoding of the V4 and V9 18S ribosomal DNA barcodes by high-throughput sequencing (HTS) were compared to the species-specific real-time qPCR targeting the A. tamiyavanichii ITS2 region. Environmental samples were screened for A. tamiyavanichii by qPCR (n = 43) and analyzed with metabarcoding (n = 30). Our results revealed a high occupancy profile across samples for both methods; 88% by qPCR, and 80-83% by HTS. When comparing the consistency between the two approaches, only two samples out of 30 were discordant. The V4 and V9 molecular units detected in each sample were positively correlated with the qPCR ITS2 gene copies (V4, rs = 0.67, p 
    Matched MeSH terms: High-Throughput Nucleotide Sequencing/methods
  2. Abdul Kadir FA, Azizan KA, Othman R
    BMC Res Notes, 2021 Mar 25;14(1):117.
    PMID: 33766087 DOI: 10.1186/s13104-021-05532-9
    OBJECTIVES: Agarwood is the aromatic heartwood formed upon wounding of Aquilaria trees either naturally formed due to physical wound sustained from natural phenomena followed by microbial infection, or artificially induced using different inoculation methods. Different induction methods produce agarwoods with different aromas which have impacts on their commercial values. In lieu of elucidating the molecular mechanisms of agarwood formation under different treatment conditions, the transcriptome profiles of trunk tissues from healthy A. malaccensis tree, and naturally and artificially induced trees were obtained.

    DATA DESCRIPTION: The transcriptome of trunk tissues from healthy A. malaccensis, and naturally and artificially induced trees were sequenced using Illumina HiSeq™ 4000 platform which resulted in a total of 38.4 Gb clean reads with Q30 rate of at least 91%. The transcriptome consists of 85,986 unigenes containing 1305 bases on average which were annotated against several databases. From this, 44,654 unigenes were mapped to 290 metabolic pathways in the Kyoto Encyclopedia of Genes and Genomes database. These transcriptome data represent considerable contribution towards Aquilaria transcriptome data and enhance current knowledge in comprehending the molecular mechanisms underlying agarwood formation in Aquilaria spp.

    Matched MeSH terms: High-Throughput Nucleotide Sequencing
  3. Mohd Talkah NS, Aziz NAKA, Rahim MFA, Hanafi NFF, Ahmad Mokhtar MA, Othman AS
    PeerJ, 2024;12:e17335.
    PMID: 38818457 DOI: 10.7717/peerj.17335
    BACKGROUND: The chloroplast genome has the potential to be genetically engineered to enhance the agronomic value of major crops. As a crop plant with major economic value, it is important to understand every aspect of the genetic inheritance pattern among Elaeis guineensis individuals to ensure the traceability of agronomic traits.

    METHODS: Two parental E. guineensis individuals and 23 of their F1 progenies were collected and sequenced using the next-generation sequencing (NGS) technique on the Illumina platform. Chloroplast genomes were assembled de novo from the cleaned raw reads and aligned to check for variations. The sequences were compared and analyzed with programming language scripting and relevant bioinformatic softwares. Simple sequence repeat (SSR) loci were determined from the chloroplast genome.

    RESULTS: The chloroplast genome assembly resulted in 156,983 bp, 156,988 bp, 156,982 bp, and 156,984 bp. The gene content and arrangements were consistent with the reference genome published in the GenBank database. Seventy-eight SSRs were detected in the chloroplast genome, with most located in the intergenic spacer region.The chloroplast genomes of 17 F1 progenies were exact copies of the maternal parent, while six individuals showed a single variation in the sequence. Despite the significant variation displayed by the male parent, all the nucleotide variations were synonymous. This study show highly conserve gene content and sequence in Elaeis guineensis chloroplast genomes. Maternal inheritance of chloroplast genome among F1 progenies are robust with a low possibility of mutations over generations. The findings in this study can enlighten inheritance pattern of Elaeis guineensis chloroplast genome especially among crops' scientists who consider using chloroplast genome for agronomic trait modifications.

    Matched MeSH terms: High-Throughput Nucleotide Sequencing
  4. Alanin KWS, Jørgensen TS, Browne PD, Petersen B, Riber L, Kot W, et al.
    Plasmid, 2021 05;115:102576.
    PMID: 33872684 DOI: 10.1016/j.plasmid.2021.102576
    Mobile genetic elements (MGEs) are instrumental in natural prokaryotic genome editing, permitting genome plasticity and allowing microbes to accumulate genetic diversity. MGEs serve as a vast communal gene pool and include DNA elements such as plasmids and bacteriophages (phages) among others. These mobile DNA elements represent a human health risk as they can introduce new traits, such as antibiotic resistance or virulence, to a bacterial strain. Sequencing libraries targeting environmental circular MGEs, referred to as metamobilomes, may broaden our current understanding of the mechanisms behind the mobility, prevalence and content of these elements. However, metamobilomics is affected by a severe bias towards small circular elements, introduced by multiple displacement amplification (MDA). MDA is typically used to overcome limiting DNA quantities after the removal of non-circular DNA during library preparations. By examining the relationship between sequencing coverage and the size of circular MGEs in paired metamobilome datasets with and without MDA, we show that larger circular elements are lost when using MDA. This study is the first to systematically demonstrate that MDA is detrimental to detecting larger-sized plasmids if small plasmids are present. It is also the first to show that MDA can be omitted when using enzyme-based DNA fragmentation and PCR in library preparation kits such as Nextera XT® from Illumina.
    Matched MeSH terms: High-Throughput Nucleotide Sequencing*
  5. Runtuwene LR, Sathirapongsasuti N, Srisawat R, Komalamisra N, Tuda JSB, Mongan AE, et al.
    BMC Res Notes, 2022 Feb 12;15(1):44.
    PMID: 35151353 DOI: 10.1186/s13104-022-05927-2
    OBJECTIVE: To disseminate the portable sequencer MinION in developing countries for the main purpose of battling infectious diseases, we found a consortium called Global Research Alliance in Infectious Diseases (GRAID). By holding and inviting researchers both from developed and developing countries, we aim to train the participants with MinION's operations and foster a collaboration in infectious diseases researches. As a real-life example in which resources are limited, we describe here a result from a training course, a metagenomics analysis from two blood samples collected from a routine cattle surveillance in Kulan Progo District, Yogyakarta Province, Indonesia in 2019.

    RESULTS: One of the samples was successfully sequenced with enough sequencing yield for further analysis. After depleting the reads mapped to host DNA, the remaining reads were shown to map to Theileria orientalis using BLAST and OneCodex. Although the reads were also mapped to Clostridium botulinum, those were found to be artifacts derived from the cow genome. An effort to construct a consensus sequence was successful using a reference-based approach with Pomoxis. Hence, we concluded that the asymptomatic cow might be infected with T. orientalis and showed the usefulness of sequencing technology, specifically the MinION platform, in a developing country.

    Matched MeSH terms: High-Throughput Nucleotide Sequencing*
  6. Chan XY, Arumugam R, Choo SW, Yin WF, Chan KG
    Genome Announc, 2013;1(4).
    PMID: 23950114 DOI: 10.1128/genomeA.00540-13
    Tropical seawater harbors a rich diversity of microorganisms as a result of its nutrient-rich environment, constant supply of sufficient sunlight, and warm climate. In this report, we present the complexity of the microbial diversity of the surface seawater of the Georgetown coast as determined using next-generation sequencing technology.
    Matched MeSH terms: High-Throughput Nucleotide Sequencing
  7. Mursyidah AK, Hafizzudin-Fedeli M, Nor Muhammad NA, Latiff A, Firdaus-Raih M, Wan KL
    Plant Cell Physiol, 2023 Apr 17;64(4):368-377.
    PMID: 36611267 DOI: 10.1093/pcp/pcad004
    The angiosperm Rafflesia exhibits a unique biology, including a growth strategy that involves endophytic parasitism of a specific host, with only the gigantic flower externally visible. The Rafflesia possesses many unique evolutionary, developmental and morphological features that are rooted in yet-to-be-explained physiological processes. Although studies on the molecular biology of Rafflesia are limited by sampling difficulties due to its rarity in the wild and the short life span of its flower, current advances in high-throughput sequencing technology have allowed for the genome- and transcriptome-level dissection of the molecular mechanisms behind the unique characteristics of this parasitic plant. In this review, we summarize major findings on the cryptic biology of Rafflesia and provide insights into future research directions. The wealth of data obtained can improve our understanding of Rafflesia species and contribute toward the conservation strategy of this endangered plant.
    Matched MeSH terms: High-Throughput Nucleotide Sequencing
  8. Wang H, Liu K, He Z, Chen Y, Hu Z, Chen W, et al.
    Mar Pollut Bull, 2024 Apr;201:116198.
    PMID: 38428045 DOI: 10.1016/j.marpolbul.2024.116198
    Metabarcoding analysis is an effective technique for monitoring the domoic acid-producing Pseudo-nitzschia species in marine environments, uncovering high-levels of molecular diversity. However, such efforts may result in the overinterpretation of Pseudo-nitzschia species diversity, as molecular diversity not only encompasses interspecies and intraspecies diversities but also exhibits extensive intragenomic variations (IGVs). In this study, we analyzed the V4 region of the 18S rDNA of 30 strains of Pseudo-nitzschia multistriata collected from the coasts of China. The results showed that each P. multistriata strain harbored about a hundred of unique 18S rDNA V4 sequence varieties, of which each represented by a unique amplicon sequence variant (ASV). This study demonstrated the extensive degree of IGVs in P. multistriata strains, suggesting that IGVs may also present in other Pseudo-nitzschia species and other phytoplankton species. Understanding the scope and levels of IGVs is crucial for accurately interpreting the results of metabarcoding analysis.
    Matched MeSH terms: High-Throughput Nucleotide Sequencing
  9. Cerca J, Armstrong EE, Vizueta J, Fernández R, Dimitrov D, Petersen B, et al.
    Genome Biol Evol, 2021 Dec 01;13(12).
    PMID: 34849853 DOI: 10.1093/gbe/evab262
    Spiders (Araneae) have a diverse spectrum of morphologies, behaviors, and physiologies. Attempts to understand the genomic-basis of this diversity are often hindered by their large, heterozygous, and AT-rich genomes with high repeat content resulting in highly fragmented, poor-quality assemblies. As a result, the key attributes of spider genomes, including gene family evolution, repeat content, and gene function, remain poorly understood. Here, we used Illumina and Dovetail Chicago technologies to sequence the genome of the long-jawed spider Tetragnatha kauaiensis, producing an assembly distributed along 3,925 scaffolds with an N50 of ∼2 Mb. Using comparative genomics tools, we explore genome evolution across available spider assemblies. Our findings suggest that the previously reported and vast genome size variation in spiders is linked to the different representation and number of transposable elements. Using statistical tools to uncover gene-family level evolution, we find expansions associated with the sensory perception of taste, immunity, and metabolism. In addition, we report strikingly different histories of chemosensory, venom, and silk gene families, with the first two evolving much earlier, affected by the ancestral whole genome duplication in Arachnopulmonata (∼450 Ma) and exhibiting higher numbers. Together, our findings reveal that spider genomes are highly variable and that genomic novelty may have been driven by the burst of an ancient whole genome duplication, followed by gene family and transposable element expansion.
    Matched MeSH terms: High-Throughput Nucleotide Sequencing
  10. Asplund M, Kjartansdóttir KR, Mollerup S, Vinner L, Fridholm H, Herrera JAR, et al.
    Clin Microbiol Infect, 2019 Oct;25(10):1277-1285.
    PMID: 31059795 DOI: 10.1016/j.cmi.2019.04.028
    OBJECTIVES: Sample preparation for high-throughput sequencing (HTS) includes treatment with various laboratory components, potentially carrying viral nucleic acids, the extent of which has not been thoroughly investigated. Our aim was to systematically examine a diverse repertoire of laboratory components used to prepare samples for HTS in order to identify contaminating viral sequences.

    METHODS: A total of 322 samples of mainly human origin were analysed using eight protocols, applying a wide variety of laboratory components. Several samples (60% of human specimens) were processed using different protocols. In total, 712 sequencing libraries were investigated for viral sequence contamination.

    RESULTS: Among sequences showing similarity to viruses, 493 were significantly associated with the use of laboratory components. Each of these viral sequences had sporadic appearance, only being identified in a subset of the samples treated with the linked laboratory component, and some were not identified in the non-template control samples. Remarkably, more than 65% of all viral sequences identified were within viral clusters linked to the use of laboratory components.

    CONCLUSIONS: We show that high prevalence of contaminating viral sequences can be expected in HTS-based virome data and provide an extensive list of novel contaminating viral sequences that can be used for evaluation of viral findings in future virome and metagenome studies. Moreover, we show that detection can be problematic due to stochastic appearance and limited non-template controls. Although the exact origin of these viral sequences requires further research, our results support laboratory-component-linked viral sequence contamination of both biological and synthetic origin.

    Matched MeSH terms: High-Throughput Nucleotide Sequencing/methods*
  11. Angers-Loustau A, Petrillo M, Bengtsson-Palme J, Berendonk T, Blais B, Chan KG, et al.
    F1000Res, 2018;7.
    PMID: 30026930 DOI: 10.12688/f1000research.14509.2
    Next-Generation Sequencing (NGS) technologies are expected to play a crucial role in the surveillance of infectious diseases, with their unprecedented capabilities for the characterisation of genetic information underlying the virulence and antimicrobial resistance (AMR) properties of microorganisms.  In the implementation of any novel technology for regulatory purposes, important considerations such as harmonisation, validation and quality assurance need to be addressed.  NGS technologies pose unique challenges in these regards, in part due to their reliance on bioinformatics for the processing and proper interpretation of the data produced.  Well-designed benchmark resources are thus needed to evaluate, validate and ensure continued quality control over the bioinformatics component of the process.  This concept was explored as part of a workshop on "Next-generation sequencing technologies and antimicrobial resistance" held October 4-5 2017.   Challenges involved in the development of such a benchmark resource, with a specific focus on identifying the molecular determinants of AMR, were identified. For each of the challenges, sets of unsolved questions that will need to be tackled for them to be properly addressed were compiled. These take into consideration the requirement for monitoring of AMR bacteria in humans, animals, food and the environment, which is aligned with the principles of a "One Health" approach.
    Matched MeSH terms: High-Throughput Nucleotide Sequencing*
  12. Schönbach C, Li J, Ma L, Horton P, Sjaugi MF, Ranganathan S
    BMC Genomics, 2018 01 19;19(Suppl 1):920.
    PMID: 29363432 DOI: 10.1186/s12864-017-4326-x
    The 16th International Conference on Bioinformatics (InCoB) was held at Tsinghua University, Shenzhen from September 20 to 22, 2017. The annual conference of the Asia-Pacific Bioinformatics Network featured six keynotes, two invited talks, a panel discussion on big data driven bioinformatics and precision medicine, and 66 oral presentations of accepted research articles or posters. Fifty-seven articles comprising a topic assortment of algorithms, biomolecular networks, cancer and disease informatics, drug-target interactions and drug efficacy, gene regulation and expression, imaging, immunoinformatics, metagenomics, next generation sequencing for genomics and transcriptomics, ontologies, post-translational modification, and structural bioinformatics are the subject of this editorial for the InCoB2017 supplement issues in BMC Genomics, BMC Bioinformatics, BMC Systems Biology and BMC Medical Genomics. New Delhi will be the location of InCoB2018, scheduled for September 26-28, 2018.
    Matched MeSH terms: High-Throughput Nucleotide Sequencing/methods*
  13. Mohd Shaufi MA, Sieo CC, Chong CW, Gan HM, Ho YW
    Gut Pathog, 2015;7:4.
    PMID: 25806087 DOI: 10.1186/s13099-015-0051-7
    Chicken gut microbiota has paramount roles in host performance, health and immunity. Understanding the topological difference in gut microbial community composition is crucial to provide knowledge on the functions of each members of microbiota to the physiological maintenance of the host. The gut microbiota profiling of the chicken was commonly performed previously using culture-dependent and early culture-independent methods which had limited coverage and accuracy. Advances in technology based on next-generation sequencing (NGS), offers unparalleled coverage and depth in determining microbial gut dynamics. Thus, the aim of this study was to investigate the ileal and caecal microbiota development as chicken aged, which is important for future effective gut modulation.
    Matched MeSH terms: High-Throughput Nucleotide Sequencing
  14. Lee SY, Ng WL, Hishamuddin MS, Mohamed R
    Mitochondrial DNA B Resour, 2019;4(1):19-20.
    PMID: 33365402 DOI: 10.1080/23802359.2018.1535848
    Known for its durable timber quality, Neobalanocarpus heimii (King) Ashton is a highly sought after tree species endemic to the Malay Peninsula. Due to its scarcity and high value, the tree is classified under the IUCN Red List categories of Vulnerable. In this study, we assembled the complete chloroplast (cp) genome of N. heimii using data from high-throughput Illumina sequencing. The Chengal cp genome is 151,191 bp in size and includes two inverted repeat regions of 23,721 bp each, which is separated by a large single copy region of 83,801 bp and a small single copy region of 19,948 bp. A total of 130 genes were predicted, including 37 tRNA, 8 rRNA, and 85 protein-coding genes. Phylogenetic analysis placed N. heimii within the order Malvales.
    Matched MeSH terms: High-Throughput Nucleotide Sequencing
  15. Lim LY, Ab Majid AH
    Data Brief, 2020 Aug;31:105903.
    PMID: 32637504 DOI: 10.1016/j.dib.2020.105903
    Tapinoma indicum is a household pest that is widely distributed in Asian countries. It is known as nuisance pest that causes annoyance and disturbance by constructing nests and foraging in building for food and water. This article documents the draft genome dataset of T. indicum collected in Penang Island, Malaysia using the next-generation sequencing known as the Illumina platform. This article presents the pair-end 150 bp genome dataset and the quality of the sequencing result. This dataset provides the information for further understanding of T. indicum in the molecular aspect and the opportunity to develop a novel method for pest control and regulation. The dataset is available under Sequence Read Archive (SRA) databases with the accession number SRR10848807.
    Matched MeSH terms: High-Throughput Nucleotide Sequencing
  16. Ashigar MA, Ab Majid AH
    Data Brief, 2020 Aug;31:106037.
    PMID: 32728606 DOI: 10.1016/j.dib.2020.106037
    Metagenomic datasets of the microbial DNA of workers of a Pheidole decarinata Santschi (Hymenoptera: Formicidae) around houses with three replicates were presented. Next-generation sequencing of the microbial DNA was performed on an Illumina Miseq platform. QIIME (version 1.9.1) was used to analyze the raw fastq files. Metagenome of the three (3) samples consist of 333,708 sequences representing 137,359,149 bps with an average length of 413.67 bps. The sequence data is available at the NCBI SRA with the bioproject number PRJNA632430. Community analysis revealed Proteobacteria was the predominant (84.77%) microbial community present in the microbial DNA of workers of the P. decarinata.
    Matched MeSH terms: High-Throughput Nucleotide Sequencing
  17. Gomes-Dos-Santos A, Lopes-Lima M, Machado AM, Marcos Ramos A, Usié A, Bolotov IN, et al.
    DNA Res, 2021 May 02;28(2).
    PMID: 33755103 DOI: 10.1093/dnares/dsab002
    Since historical times, the inherent human fascination with pearls turned the freshwater pearl mussel Margaritifera margaritifera (Linnaeus, 1758) into a highly valuable cultural and economic resource. Although pearl harvesting in M. margaritifera is nowadays residual, other human threats have aggravated the species conservation status, especially in Europe. This mussel presents a myriad of rare biological features, e.g. high longevity coupled with low senescence and Doubly Uniparental Inheritance of mitochondrial DNA, for which the underlying molecular mechanisms are poorly known. Here, the first draft genome assembly of M. margaritifera was produced using a combination of Illumina Paired-end and Mate-pair approaches. The genome assembly was 2.4 Gb long, possessing 105,185 scaffolds and a scaffold N50 length of 288,726 bp. The ab initio gene prediction allowed the identification of 35,119 protein-coding genes. This genome represents an essential resource for studying this species' unique biological and evolutionary features and ultimately will help to develop new tools to promote its conservation.
    Matched MeSH terms: High-Throughput Nucleotide Sequencing
  18. Abdelhafiz YA, Manaharan T, BinMohamad S, Merican AF
    Curr Microbiol, 2017 Apr 17.
    PMID: 28417189 DOI: 10.1007/s00284-017-1249-3
    The draft genome here presents the sequence of Bacillus subtilis UMX-103. The bacterial strain was isolated from hydrocarbon-contaminated soil from Terengganu, Malaysia. The whole genome of the bacterium was sequenced using Illumina HiSeq 2000 sequencing platform. The genome was assembled using de novo approach. The genome size of UMX-103 is 4,234,627 bp with 4399 genes comprising 4301 protein-coding genes and 98 RNA genes. The analysis of assembled genes revealed the presence of 25 genes involved in biosurfactant production, where 14 of the genes are related to biosynthesis and 11 of the genes are in the regulation of biosurfactant productions. This draft genome will provide insights into the genetic bases of its biosurfactant-producing capabilities.
    Matched MeSH terms: High-Throughput Nucleotide Sequencing
  19. Chan Mun Wei J, Zhao Z, Li SC, Ng YK
    Comput Biol Chem, 2018 Jun;74:428-433.
    PMID: 29625871 DOI: 10.1016/j.compbiolchem.2018.03.010
    DNA fingerprinting, also known as DNA profiling, serves as a standard procedure in forensics to identify a person by the short tandem repeat (STR) loci in their DNA. By comparing the STR loci between DNA samples, practitioners can calculate a probability of match to identity the contributors of a DNA mixture. Most existing methods are based on 13 core STR loci which were identified by the Federal Bureau of Investigation (FBI). Analyses based on these loci of DNA mixture for forensic purposes are highly variable in procedures, and suffer from subjectivity as well as bias in complex mixture interpretation. With the emergence of next-generation sequencing (NGS) technologies, the sequencing of billions of DNA molecules can be parallelized, thus greatly increasing throughput and reducing the associated costs. This allows the creation of new techniques that incorporate more loci to enable complex mixture interpretation. In this paper, we propose a computation for likelihood ratio that uses NGS (next generation sequencing) data for DNA testing on mixed samples. We have applied the method to 4480 simulated DNA mixtures, which consist of various mixture proportions of 8 unrelated whole-genome sequencing data. The results confirm the feasibility of utilizing NGS data in DNA mixture interpretations. We observed an average likelihood ratio as high as 285,978 for two-person mixtures. Using our method, all 224 identity tests for two-person mixtures and three-person mixtures were correctly identified.
    Matched MeSH terms: High-Throughput Nucleotide Sequencing
  20. Foong LC, Ho ASH, Yeo BPH, Lim YM, Tam SM
    Data Brief, 2019 Apr;23:103603.
    PMID: 30815523 DOI: 10.1016/j.dib.2018.12.042
    Impatiens balsamina is both an ornamental and pharmacologically important plant widely distributed in many Asian countries. The leaf of the plant contains many secondary metabolites possessing anti-microbial, anti-tumour and anti-cancer properties. Though there are many phytochemical studies done on the different natural extracts for this plant, not much of genetic information is currently available. This is the first transcriptome of I. balsamina leaf using paired-end Illumina HiSeq sequencing which generated 10.79 GB of raw data. Information of pre-processing (reads filtering), de novo assembly and functional annotation are presented. This data is accessible via NCBI BioProject (PRJNA505711).
    Matched MeSH terms: High-Throughput Nucleotide Sequencing
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links