Displaying all 5 publications

Abstract:
Sort:
  1. Alasmari SM, Albalawi AE, Alghabban AJ, Shater AF, Al-Ahmadi BM, Baghdadi HBA, et al.
    Trop Biomed, 2024 Sep 01;41(3):377-384.
    PMID: 39548793 DOI: 10.47665/tb.41.3.019
    Current strategies for tick control have led to the development of resistance and environmental contamination. Consequently, there is an urgent need for research into new and effective acaricides for tick control. The aim of this study was to fabricate and characterize Linalool loaded zinc oxide nanoparticles (Lin@ZNP), and to assess the acaricidal, larvacidal, and repellent activities of Lin@ ZNP against Hyalomma anatolicum, a prevalent tick species infesting cattle in Saudi Arabia. Lin@ ZNP was synthesized using an ethanolic solution of polyvinyl alcohol. The adult immersion, the larval packet, and the assessment of vertical movement behavior of tick larvae assays were utilized to examine the acaricidal, larvicidal, and repellent activities of Lin@ZNP against H. anatolicum, respectively. Furthermore, the impact of Lin@ZNP on acetylcholinesterase and oxidant/antioxidant enzyme activities was investigated. Exposure of adult H. anatolicum to different concentrations of Lin@ZNP resulted in noticeable (p<0.001) reductions in the viability rate of adults and the mean number, weight, and hatchability of eggs, compared to the control group. Lin@ZNP demonstrated significant repellent effects on H. anatolicum larvae after 60, 120, and 180 minutes of exposure. Lin@ZNP, particularly at all concentrations, markedly suppressed the acetylcholinesterase activity of the larval stage of H. anatolicum (P<0.001); but increase in malondialdehyde (MDA) levels (P<0.001) and a decrease in glutathione-S-transferase (GST) levels in H. anatolicum larvae (P<0.001). Lin@ZNP exhibited considerable acaricidal, larvicidal, and repellent effects against H. dromedarii adults and larvae in a manner dependent on the dosage. Additionally, Lin@ZNP notably reduced AChE levels and antioxidant activity, while inducing oxidative stress in H. anatolicum larvae. Nevertheless, further research is necessary to elucidate the precise mechanisms and practical efficacy of Lin@ZNP.
    Matched MeSH terms: Insect Repellents/chemistry
  2. Appalasamy S, Diyana MHA, Arumugam N, Boon JG
    Sci Rep, 2021 01 08;11(1):153.
    PMID: 33420232 DOI: 10.1038/s41598-020-80018-5
    The use of chemical insecticides has had many adverse effects. This study reports a novel perspective on the application of insect-based compounds to repel and eradicate other insects in a controlled environment. In this work, defense fluid was shown to be a repellent and insecticide against termites and cockroaches and was analyzed using gas chromatography-mass spectrometry (GC-MS). Globitermes sulphureus extract at 20 mg/ml showed the highest repellency for seven days against Macrotermes gilvus and for thirty days against Periplaneta americana. In terms of toxicity, G. sulphureus extract had a low LC50 compared to M. carbonarius extract against M. gilvus. Gas chromatography-mass spectrometry analysis of the M. carbonarius extract indicated the presence of six insecticidal and two repellent compounds in the extract, whereas the G. sulphureus extract contained five insecticidal and three repellent compounds. The most obvious finding was that G. sulphureus defense fluid had higher potential as a natural repellent and termiticide than the M. carbonarius extract. Both defense fluids can play a role as alternatives in the search for new, sustainable, natural repellents and termiticides. Our results demonstrate the potential use of termite defense fluid for pest management, providing repellent and insecticidal activities comparable to those of other green repellent and termiticidal commercial products.
    Matched MeSH terms: Insect Repellents/chemistry
  3. Bharathithasan M, Ravindran DR, Rajendran D, Chun SK, Abbas SA, Sugathan S, et al.
    PLoS One, 2021;16(11):e0260281.
    PMID: 34843539 DOI: 10.1371/journal.pone.0260281
    BACKGROUND: There is a growing need to use green alternative larvicidal control for Aedes larvae compared to chemical insecticides. Substantial reliance on chemical insecticides caused insecticide resistance in mosquito populations. Thus, research for alternate chemical compounds from natural products is necessary to control Aedes larvae. This study explores the analysis of chemical compositions from Areca catechu nut as a potential larvicide for Aedes (Diptera: Culicidae).

    METHODS: The Areca catechu nut collected from Ipoh, Perak, Malaysia was grounded into powder and used for Soxhlet extraction. The chemical analysis of the extracts and their structures were identified using the GCMS-QP2010 Ultra (Shimadzu) system. National Institute of Standards and Technology (NIST) Chemistry WebBook, Standard Reference Database 69 (https://webbook.nist.gov/chemistry/) and PubChem (https://pubchem.ncbi.nlm.nih.gov/), the two databases used to retrieve the synonyms, molecular formula, molecular weight, and 2-dimensional (2D) structure of chemical compounds. Next, following WHO procedures for larval bioassays, the extracts were used to asses larvicidal activity against early 4th instar larvae of Aedes aegypti and Aedes albopictus.

    RESULTS: The larvicidal activities were observed against early 4th stage larvae with different concentrations in the range from 200 mg/L to 1600 mg/L. The LC50 and LC95 of Aedes aegypti were 621 mg/L and 2264 mg/L respectively; whereas the LC50 and LC95 of Aedes albopictus were 636 mg/L and 2268 mg/L respectively. Mortality was not observed in the non-target organism test. The analysis using gas chromatography and mass spectrometer recovered several chemical compounds such as Arecaidine, Dodecanoic acid, Methyl tetradecanoate, Tetradecanoic acid , and n-Hexadecanoic acid bioactive components. These chemical constituents were used as additive formulations in pesticides, pest control, insect repellent, and insecticidal agents.

    CONCLUSIONS: Our study showed significant outcomes from the extract of Areca catechu nut and it deserves further investigation in relation to chemical components and larvicidal actions between different species of Aedes mosquitoes. Even though all these findings are fundamental, it may have some interesting potentials to be developed as natural bio-larvicidal products.

    Matched MeSH terms: Insect Repellents/chemistry
  4. Tay KS, Rahman NA, Abas MR
    Water Environ Res, 2011 Aug;83(8):684-91.
    PMID: 21905405
    This study investigated the removal of parabens, N,N-diethyl-m-toluamide (DEET), and phthalates by ozonation. The second-order rate constants for the reaction between selected compounds with ozone at pH 7 were of (2.2 +/-0.2) X 10(6) to (2.9 +/-0.3) X 10(6) M 1/s for parabens, (2.1+/- 0.3) to (3.9 +/-0.5) M-1/s for phthalates, and (5.2 +/-0.3) M-1/s for DEET. The rate constants for the reaction between selected compounds with hydroxyl radical ranged from (2.49 +/-0.06) x 10(9) to (8.5 +/-0.2) x 10(9) M-1/s. Ozonation of selected compounds in secondary wastewater and surface waters revealed that ozone dose of 1 and 3 mg/L yielded greater than 99% depletion of parabens and greater than 92% DEET and phthalates, respectively. In addition, parabens were found to transform almost exclusively through the reaction with ozone, while DEET and phthalates were transformed almost entirely by hydroxyl radicals (.OH).
    Matched MeSH terms: Insect Repellents/chemistry
  5. Dieng H, Satho T, Abang F, Miake F, Ghani IA, Latip NA, et al.
    Environ Sci Pollut Res Int, 2017 Sep;24(26):21375-21385.
    PMID: 28744676 DOI: 10.1007/s11356-017-9624-y
    Yearly, huge amounts of sock refuse are discarded into the environment. Socks contain many molecules, and worn ones, which are rich in smell-causing bacteria, have a strong influence on animals' behaviors. But the impacts of sock odor on the oviposition behavior of dengue vectors are unknown. We assessed whether Aedes albopictus changes its oviposition activity in response to the presence of used socks extract (USEx) in potential breeding grounds, using choice and no-choice bioassays (NCB). When furnished even chances to oviposit in two sites holding USEx and two others containing water (control), Ae. albopictus deposited significantly less eggs in USEx than in water sites. A similar pattern of oviposition preference was also observed when there were more oviposition options in water. When there were greater oviposition opportunities in USEx sites, Ae. albopictus oviposited preferentially in water. Females laid significantly more eggs during the NCB involving water than USEx. Also, significantly more mature eggs were retained by females in the NCB with USEx than in that with water. These observations strongly suggest the presence of molecules with either repellent or deterrent activities against Ae. albopictus females and provide an impetus to advocate the integration of used socks in dengue control programs. Such applications could be a realistic end-of-life recourse to reroute this waste from landfills.
    Matched MeSH terms: Insect Repellents/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links