Displaying all 6 publications

Abstract:
Sort:
  1. Sari DCR, Soetoko AS, Soetoko AS, Romi MM, Tranggono U, Setyaningsih WAW, et al.
    Med J Malaysia, 2020 05;75(Suppl 1):14-18.
    PMID: 32471964
    INTRODUCTION: Uric acid is associated with cardiometabolic risk factor and severity of liver damage. The mechanism of uric acid inducing liver damage is still elusive. This study elucidates the development of liver fibrosis under hyperuricemia.

    METHODS AND MATERIALS: Hyperuricemia model was performed in male Swiss Webster mice. Intraperitoneally injection of uric acid (125mg/kg body weight) was done for 7 and 14 days (UA7 and UA14 groups). Meanwhile, the UAL groups were injected with uric acid and followed by the administration of allopurinol (UAL7 and UAL14 groups). On the due date, mice were sacrificed, and liver was harvested. Uric acid, SGOT, SGPT, and albumin level were measured from the serum. The mRNA expression of TLR4, MCP1, CD68, and collagen1 were assessed through RT-PCR. Liver fibrosis was quantified through Sirius red staining, while the number of hepatic stellates cells (HSCs) and TLR4 were assessed through IHC staining.

    RESULTS: Uric acid induction for 7 and 14 days stimulated an increase of both SGOT and SGPT serum levels. Followed by enhanced inflammatory mediators: Toll-like receptor-4 (TLR- 4), Monocyte Chemoattractant Protein-1 (MCP-1) and Cluster of Differentiation 68 (CD68) mRNA expression in the liver (p<0.05). The histological findings showed that the UA7 and UA14 groups had higher liver fibrosis scores (p<0.05), collagen I mRNA expression (p<0.05), and the number of HSCs (p<0.05) compared to Control group. Administration of allopurinol showed amelioration of uric acid and liver enzymes levels which followed by inflammatory mediators, liver fibrosis and collagen1, and hepatic stellate cells significantly.

    CONCLUSION: Therefore, uric acid augmented the liver fibrosis by increasing the number of hepatic stellate cells.

    Matched MeSH terms: Liver Cirrhosis/chemically induced*
  2. Bradosty SW, Hamad SW, Agha NFS, Shaikh FK, Qadir Nanakali NM, Aziz PY, et al.
    Environ Toxicol, 2021 Dec;36(12):2404-2413.
    PMID: 34436826 DOI: 10.1002/tox.23353
    Morinda elliptica L. (Rubiaceae) is a phytomedicinal herb, used to treat gastrointestinal complications in Peninsular Malaysia. The study evaluates the in vivo hepatoprotective activity of ethanolic extract of M. elliptica stem in thioacetamide (TAA) induced liver fibrosis in male Sprague Drawly rats. Thirty adult rats were divided into five groups of six rats each. Rats of the normal control group received intraperitoneal injections (i. p.) of vehicle 10% Tween-20, 5 ml/kg, and hepatotoxic group 200 mg/kg TAA three times per week respectively. Three supplementary groups were treated with TAA plus daily oral silymarin (50 mg/kg) or M. elliptica (250 or 500 mg/kg). After 8 weeks of treatment, all rats were sacrificed. Liver fibrosis was assessed by gross macroscopic and microscopic tissue analysis, histopathological, and biochemical analysis. The livers of the TAA treated group showed uniform coarse granules, hepatocytic necrosis with lymphocytes infiltration. Contrary, the livers of M. elliptica treated groups (250 and 500 mg/kg) were much smoother and the cell damage was much lesser. The livers of M. elliptica treated groups rats showed elevated activity of SOD and CAT with a significant decrease in MDA level at p liver damage parameters, that is, ALP, ALT, and AST, bilirubin, total protein, and albumin were restored to the normal comparable to silymarin. M. elliptica stem extract significantly promoted normal rat liver architecture with significant perfections in biochemical parameters. The molecular contents of M. elliptica with hepatoprotective influence could be discovered, is the future prospective of this study.
    Matched MeSH terms: Liver Cirrhosis/chemically induced
  3. Kadir FA, Kassim NM, Abdulla MA, Kamalidehghan B, Ahmadipour F, Yehye WA
    ScientificWorldJournal, 2014;2014:301879.
    PMID: 24701154 DOI: 10.1155/2014/301879
    The antifibrotic effects of traditional medicinal herb Caesalpinia sappan (CS) extract on liver fibrosis induced by thioacetamide (TAA) and the expression of transforming growth factor β1 (TGF-β1), α-smooth muscle actin (αSMA), and proliferating cell nuclear antigen (PCNA) in rats were studied. A computer-aided prediction of antioxidant and hepatoprotective activities was primarily performed with the Prediction Activity Spectra of the Substance (PASS) Program. Liver fibrosis was induced in male Sprague Dawley rats by TAA administration (0.03% w/v) in drinking water for a period of 12 weeks. Rats were divided into seven groups: control, TAA, Silymarin (SY), and CS 300 mg/kg body weight and 100 mg/kg groups. The effect of CS on liver fibrogenesis was determined by Masson's trichrome staining, immunohistochemical analysis, and western blotting. In vivo determination of hepatic antioxidant activities, cytochrome P450 2E1 (CYP2E1), and matrix metalloproteinases (MPPS) was employed. CS treatment had significantly increased hepatic antioxidant enzymes activity in the TAA-treated rats. Liver fibrosis was greatly alleviated in rats when treated with CS extract. CS treatment was noted to normalize the expression of TGF-β1, αSMA, PCNA, MMPs, and TIMP1 proteins. PASS-predicted plant activity could efficiently guide in selecting a promising pharmaceutical lead with high accuracy and required antioxidant and hepatoprotective properties.
    Matched MeSH terms: Liver Cirrhosis/chemically induced*
  4. Rengasamy M, Singh G, Fakharuzi NA, Siddikuzzaman, Balasubramanian S, Swamynathan P, et al.
    Stem Cell Res Ther, 2017 06 13;8(1):143.
    PMID: 28610623 DOI: 10.1186/s13287-017-0595-1
    BACKGROUND: Mesenchymal stromal cells (MSCs) from various tissues have shown moderate therapeutic efficacy in reversing liver fibrosis in preclinical models. Here, we compared the relative therapeutic potential of pooled, adult human bone marrow (BM)- and neonatal Wharton's jelly (WJ)-derived MSCs to treat CCl4-induced liver fibrosis in rats.

    METHODS: Sprague-Dawley rats were injected with CCl4 for 8 weeks to induce irreversible liver fibrosis. Ex-vivo expanded, pooled human MSCs obtained from BM and WJ were intravenously administered into rats with liver fibrosis at a dose of 10 × 106 cells/animal. Sham control and vehicle-treated animals served as negative and disease controls, respectively. The animals were sacrificed at 30 and 70 days after cell transplantation and hepatic-hydroxyproline content, histopathological, and immunohistochemical analyses were performed.

    RESULTS: BM-MSCs treatment showed a marked reduction in liver fibrosis as determined by Masson's trichrome and Sirius red staining as compared to those treated with the vehicle. Furthermore, hepatic-hydroxyproline content and percentage collagen proportionate area were found to be significantly lower in the BM-MSCs-treated group. In contrast, WJ-MSCs treatment showed less reduction of fibrosis at both time points. Immunohistochemical analysis of BM-MSCs-treated liver samples showed a reduction in α-SMA+ myofibroblasts and increased number of EpCAM+ hepatic progenitor cells, along with Ki-67+ and human matrix metalloprotease-1+ (MMP-1+) cells as compared to WJ-MSCs-treated rat livers.

    CONCLUSIONS: Our findings suggest that BM-MSCs are more effective than WJ-MSCs in treating liver fibrosis in a CCl4-induced model in rats. The superior therapeutic activity of BM-MSCs may be attributed to their expression of certain MMPs and angiogenic factors.

    Matched MeSH terms: Liver Cirrhosis/chemically induced
  5. Abdulaziz Bardi D, Halabi MF, Hassandarvish P, Rouhollahi E, Paydar M, Moghadamtousi SZ, et al.
    PLoS One, 2014;9(10):e109424.
    PMID: 25280007 DOI: 10.1371/journal.pone.0109424
    This study investigated the hepatoprotective effects of ethanolic Andrographis paniculata leaf extract (ELAP) on thioacetamide-induced hepatotoxicity in rats. An acute toxicity study proved that ELAP is not toxic in rats. To examine the effects of ELAP in vivo, male Sprague Dawley rats were given intraperitoneal injections of vehicle 10% Tween-20, 5 mL/kg (normal control) or 200 mg/kg TAA thioacetamide (to induce liver cirrhosis) three times per week. Three additional groups were treated with thioacetamide plus daily oral silymarin (50 mg/kg) or ELAP (250 or 500 mg/kg). Liver injury was assessed using biochemical tests, macroscopic and microscopic tissue analysis, histopathology, and immunohistochemistry. In addition, HepG2 and WRL-68 cells were treated in vitro with ELAP fractions to test cytotoxicity. Rats treated with ELAP exhibited significantly lower liver/body weight ratios and smoother, more normal liver surfaces compared with the cirrhosis group. Histopathology using Hematoxylin and Eosin along with Masson's Trichrome stain showed minimal disruption of hepatic cellular structure, minor fibrotic septa, a low degree of lymphocyte infiltration, and minimal collagen deposition after ELAP treatment. Immunohistochemistry indicated that ELAP induced down regulation of proliferating cell nuclear antigen. Also, hepatic antioxidant enzymes and oxidative stress parameters in ELAP-treated rats were comparable to silymarin-treated rats. ELAP administration reduced levels of altered serum liver biomarkers. ELAP fractions were non-cytotoxic to WRL-68 cells, but possessed anti-proliferative activity on HepG2 cells, which was confirmed by a significant elevation of lactate dehydrogenase, reactive oxygen species, cell membrane permeability, cytochrome c, and caspase-8,-9, and, -3/7 activity in HepG2 cells. A reduction of mitochondrial membrane potential was also detected in ELAP-treated HepG2 cells. The hepatoprotective effect of 500 mg/kg of ELAP is proposed to result from the reduction of thioacetamide-induced toxicity, normalizing reactive oxygen species levels, inhibiting cellular proliferation, and inducing apoptosis in HepG2 cells.
    Matched MeSH terms: Liver Cirrhosis/chemically induced
  6. Wu X, Zhang S, Lai J, Lu H, Sun Y, Guan W
    Exp Clin Transplant, 2020 12;18(7):823-831.
    PMID: 33349209 DOI: 10.6002/ect.2020.0108
    OBJECTIVES: Liver fibrosis is inevitable in the healing process of liver injury. Liver fibrosis will develop into liver cirrhosis unless the damaging factors are removed. This study investigated the potential therapy of Bama pig adipose-derived mesenchymal stem cells in a carbon tetrachloride-induced liver fibrosis Institute of Cancer Research strain mice model.

    MATERIALS AND METHODS: Adipose-derived mesenchymal stem cells were injected intravenously into the tails of mice of the Institute of Cancer Research strain that had been treated with carbon tetrachloride for 4 weeks. Survival rate, migration, and proliferation of adipose-derived mesenchymal stem cells in the liver were observed by histochemistry, fluorescent labeling, and serological detection.

    RESULTS: At 1, 2, and 3 weeks after adipose-derived mesenchymal stem cell injection, liver fibrosis was significantly ameliorated. The injected adipose-derived mesenchymal stem cells had hepatic differentiation potential in vivo, and the survival rate of adipose-derived mesenchymal stem cells declined over time.

    CONCLUSIONS: The findings in this study confirmed that adipose-derived mesenchymal stem cells derived from the Bama pig can be used in the treatment of liver fibrosis, and the grafted adipose-derived mesenchy-mal stem cells can migrate, survive, and differentiate into hepatic cells in vivo.

    Matched MeSH terms: Liver Cirrhosis/chemically induced
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links