Displaying all 8 publications

Abstract:
Sort:
  1. Mohd Fakharul Zaman Raja Yahya, Hasidah Mohd Sidek
    Kajian ini melibatkan pemantauan perkembangan parasitemia dan taburan morfologi Plasmodium berghei sewaktu infeksi parasit dalam mencit, serta penentuan kesan infeksi P. berghei ke atas pengisyaratan MAP kinase eritrosit perumah. Analisis mikroskop ke atas slaid calitan darah terwarna-Giemsa yang disediakan daripada mencit terinfeksi-P. berghei (strain PZZ1/00) menunjukkan darjah parasitemia mencapai sehingga 70% dalam masa dua minggu selepas penyuntikan parasit. Morfologi cecincin dan trofozoit parasit dicerap dengan jelas sepanjang tempoh infeksi manakala morfologi skizon parasit hanya dicerap dengan ketara selepas hari ketiga selepas penyuntikan parasit. Pemblotan Western [antibodi primer: anti-MAP kinase (ERK-1/2 tak terfosfat) monoklon; antibodi sekunder: anti-IgG, poliklon terkonjugat-HRP] ke atas protein sitosol eritrosit terinfeksi-P. berghei (70% parasitemia) susulan pemisahan SDS-PAGE menunjukkan bahawa keamatan protein imunoreaktif-MAP kinase eritrosit berberat molekul 42 dan 44 kDa didapati meningkat secara signifikan (p<0.05) pada 70% iaitu peningkatan sebanyak 21.5% dan 22.3% masing-masing berbanding sampel kawalan tanpa infeksi. Samada kesan infeksi P. berghei (70% parasitemia) ke atas pengisyaratan MAP kinase perumah ini berkaitan dengan pengaktifan enzim ini perlu dikaji dengan lebih lanjut.
    Matched MeSH terms: Mitogen-Activated Protein Kinase 1
  2. Chien SY, Hsu CH, Lin CC, Chuang YC, Lo YS, Hsi YT, et al.
    Environ Toxicol, 2017 Aug;32(8):2085-2092.
    PMID: 28383207 DOI: 10.1002/tox.22423
    Nasopharyngeal carcinoma (NPC), a tumor arising from epithelial cells that cover the surface and line the nasopharynx, is a rare malignancy worldwide but is prevalent in certain geographical areas, such as Southern Asia (Taiwan, Hong Kong, Singapore, Malaysia, and Southern China) and North Africa. Despite advances in diagnostic techniques and improvements in treatment modalities, the prognosis of NPC remains poor. Therefore, an effective chemotherapy regimen that enhances tumor sensitivity to chemotherapeutics is urgently required. Nimbolide, derived from Azadirachta indica, has a wide range of beneficial effects, including anti-inflammatory and anticancer properties. The present study evaluated the antitumor activity of nimbolide in NPC cells and its underlying mechanisms. Our results revealed that the treatment of HONE-1 cells with nimbolide potently inhibited cell viability. Moreover, nimbolide led to cell cycle arrest, which subsequently activated caspase-3, -8, and -9 and poly (ADP-ribose) polymerase to induce cell apoptosis. Moreover, nimbolide induced Bik, Bax, and t-Bid expression in HONE-1 cells. The results indicated that nimbolide induces apoptosis through the modulation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) pathways. Nimbolide induces apoptosis in human NPC cells and is a potential chemopreventive agent against NPC proliferation. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 2085-2092, 2017.
    Matched MeSH terms: Mitogen-Activated Protein Kinase 1/metabolism
  3. Gautam V, Nimmanpipug P, Zain SM, Rahman NA, Lee VS
    Molecules, 2021 Jul 27;26(15).
    PMID: 34361694 DOI: 10.3390/molecules26154540
    Extracellular signal-regulated kinases 1 and 2 (ERK1/2) play key roles in promoting cell survival and proliferation through the phosphorylation of various substrates. Remarkable antitumour activity is found in many inhibitors that act upstream of the ERK pathway. However, drug-resistant tumour cells invariably emerge after their use due to the reactivation of ERK1/2 signalling. ERK1/2 inhibitors have shown clinical efficacy as a therapeutic strategy for the treatment of tumours with mitogen-activated protein kinase (MAPK) upstream target mutations. These inhibitors may be used as a possible strategy to overcome acquired resistance to MAPK inhibitors. Here, we report a class of repeat proteins-designed ankyrin repeat protein (DARPin) macromolecules targeting ERK2 as inhibitors. The structural basis of ERK2-DARPin interactions based on molecular dynamics (MD) simulations was studied. The information was then used to predict stabilizing mutations employing a web-based algorithm, MAESTRO. To evaluate whether these design strategies were successfully deployed, we performed all-atom, explicit-solvent molecular dynamics (MD) simulations. Two mutations, Ala → Asp and Ser → Leu, were found to perform better than the original sequence (DARPin E40) based on the associated energy and key residues involved in protein-protein interaction. MD simulations and analysis of the data obtained on these mutations supported our predictions.
    Matched MeSH terms: Mitogen-Activated Protein Kinase 1/metabolism*
  4. Mohd Fakharul Zaman Raja Yahya, Hasidah Mohd Sidek
    MyJurnal
    Malaria parasites, Plasmodium can infect a wide range of hosts including humans and rodents. There are two copies of mitogen activated protein kinases (MAPKs) in Plasmodium, namely MAPK1 and MAPK2. The MAPKs have been studied extensively in the human Plasmodium, P. falciparum. However, the MAPKs from other Plasmodium species have not been characterized and it is therefore the premise of presented study to characterize the MAPKs from other Plasmodium species-P. vivax, P knowlesi, P berghei, P chabaudi and P.yoelli using a series of publicly available bioinformatic tools. In silico data indicates that all Plasmodium MAPKs are nuclear-localized and contain both a nuclear localization signal (NLS) and a Leucine-rich nuclear export signal (NES). The activation motifs of TDY and TSH were found to be fully conserved in Plasmodium MAPK1 and MAPK2, respectively. The detailed manual inspection of a multiple sequence alignment (MSA) construct revealed a total of 17 amino acid stack patterns comprising of different amino acids present in MAPK1 and MAPK2 respectively, with respect to rodent and human Plasmodia. It is proposed that these amino acid stack patterns may be useful in explaining the disparity between rodent and human Plasmodium MAPKs.
    Matched MeSH terms: Mitogen-Activated Protein Kinase 1
  5. Jabbarzadeh Kaboli P, Leong MP, Ismail P, Ling KH
    Pharmacol Rep, 2019 Feb;71(1):13-23.
    PMID: 30343043 DOI: 10.1016/j.pharep.2018.07.005
    BACKGROUND: Berberine is an alkaloid plant-based DNA intercalator that affects gene regulation, particularly expression of oncogenic and tumor suppressor proteins. The effects of berberine on different signaling proteins remains to be elucidated. The present study aimed to identify the effects of berberine against key oncogenic proteins in breast cancer cells.

    METHODS: Molecular docking and molecular dynamics simulations were used for EGFR, p38, ERK1/2, and AKT. The effects of berberine and lapatinib on MAPK and PI3K pathways in MDA-MB231 and MCF-7 cells were evaluated using immunoflorescence assays, and the amounts of phosphorylated kinases were compared to total kinases after treating with different concentrations of berberine.

    RESULTS: Simulations showed berberine accurately interacted with EGFR, AKT, P38, and ERK1/2 active sites in silico (scores = -7.57 to -7.92 Kcal/mol) and decreased the levels of active forms of corresponding enzymes in both cell lines; however, berberine binding to p38 showed less stability. Cytotoxicity analysis indicated that MDA-MB231 cells were resistant to berberine compared to MCF-7 cells [72 h IC50 = 50 versus 15 μM, respectively). Also, lapatinib strongly activated AKT but suppressed EGFR in MDA-MB231 cells. The activity of EGFR, AKT, P38, and ERK1/2 were affected by berberine; however, berberine dramatically reduced EGFR and AKT phosphorylation.

    CONCLUSION: By way of its multikinase inhibitory effects, berberine might be a useful replacement for lapatinib, an EGFR inhibitor which can cause acquired drug resistance in patients.

    Matched MeSH terms: Mitogen-Activated Protein Kinase 1/antagonists & inhibitors*; Mitogen-Activated Protein Kinase 1/metabolism; Mitogen-Activated Protein Kinase 1/chemistry
  6. Mohammed Abdul KS, Rayadurgam J, Faiz N, Jovanović A, Tan W
    J Cell Mol Med, 2020 09;24(18):10924-10934.
    PMID: 32794652 DOI: 10.1111/jcmm.15721
    In the present study, we have investigated potential cardioprotective properties of Isosteviol analogue we recently synthesized and named JC105. Treatment of heart embryonic H9c2 cells with JC105 (10 μM) significantly increased survival of cells exposed to hypoxia-reoxygenation. JC105 (10 μM) activated ERK1/2, DRP1 and increased levels of cardioprotective SUR2A in hypoxia-reoxygenation, but did not have any effects on ERK1/2, DRP1 and/or SUR2A in normoxia. U0126 (10 μM) inhibited JC105-mediated phosphorylation of ERK1/2 and DRP1 without affecting AKT or AMPK, which were also not regulated by JC105. Seahorse bioenergetic analysis demonstrated that JC105 (10 μM) did not affect mitochondria at rest, but it counteracted all mitochondrial effects of hypoxia-reoxygenation. Cytoprotection afforded by JC105 was inhibited by U0126 (10 μM). Taken all together, these demonstrate that (a) JC105 protects H9c2 cells against hypoxia-reoxygenation and that (b) this effect is mediated via ERK1/2. The unique property of JC105 is that selectively activates ERK1/2 in cells exposed to stress, but not in cells under non-stress conditions.
    Matched MeSH terms: Mitogen-Activated Protein Kinase 1/metabolism
  7. Bashanfer SAA, Saleem M, Heidenreich O, Moses EJ, Yusoff NM
    Oncol Rep, 2019 Mar;41(3):2027-2040.
    PMID: 30569130 DOI: 10.3892/or.2018.6926
    The t(8;21) translocation is one of the most frequent chromosome abnormalities associated with acute myeloid leukaemia (AML). This abberation deregulates numerous molecular pathways including the ERK signalling pathway among others. Therefore, the aim of the present study was to investigate the gene expression patterns following siRNA‑mediated suppression of RUNX1‑RUNX1T1 and MAPK1 in Kasumi‑1 and SKNO‑1 cells and to determine the differentially expressed genes in enriched biological pathways. BeadChip microarray and gene ontology analysis revealed that RUNX1‑RUNX1T1 and MAPK1 suppression reduced the proliferation rate of the t(8;21) cells with deregulated expression of several classical positive regulator genes that are otherwise known to enhance cell proliferation. RUNX1‑RUNX1T1 suppression exerted an anti‑apoptotic effect through the overexpression of BCL2, BIRC3 and CFLAR genes, while MAPK1 suppression induced apopotosis in t(8;21) cells by the apoptotic mitochondrial changes stimulated by the activity of upregulated TP53 and TNFSF10, and downregulated JUN gene. RUNX1‑RUNX1T1 suppression supported myeloid differentiation by the differential expression of CEBPA, CEBPE, ID2, JMJD6, IKZF1, CBFB, KIT and CDK6, while MAPK1 depletion inhibited the differentiation of t(8;21) cells by elevated expression of ADA and downregulation of JUN. RUNX1‑RUNX1T1 and MAPK1 depletion induced cell cycle arrest at the G0/G1 phase. Accumulation of cells in the G1 phase was largely the result of downregulated expression of TBRG4, CCNE2, FOXO4, CDK6, ING4, IL8, MAD2L1 and CCNG2 in the case of RUNX1‑RUNX1T1 depletion and increased expression of RASSF1, FBXO6, DADD45A and P53 in the case of MAPK1 depletion. Taken together, the current results demonstrate that MAPK1 promotes myeloid cell proliferation and differentiation simultaneously by cell cycle progression while suppresing apoptosis.
    Matched MeSH terms: Mitogen-Activated Protein Kinase 1/genetics*; Mitogen-Activated Protein Kinase 1/metabolism
  8. Arifin SA, Paternoster S, Carlessi R, Casari I, Ekberg JH, Maffucci T, et al.
    Biochim Biophys Acta Mol Cell Biol Lipids, 2018 09;1863(9):1132-1141.
    PMID: 29883799 DOI: 10.1016/j.bbalip.2018.06.007
    The gastrointestinal tract is increasingly viewed as critical in controlling glucose metabolism, because of its role in secreting multiple glucoregulatory hormones, such as glucagon like peptide-1 (GLP-1). Here we investigate the molecular pathways behind the GLP-1- and insulin-secreting capabilities of a novel GPR119 agonist, Oleoyl-lysophosphatidylinositol (Oleoyl-LPI). Oleoyl-LPI is the only LPI species able to potently stimulate the release of GLP-1 in vitro, from murine and human L-cells, and ex-vivo from murine colonic primary cell preparations. Here we show that Oleoyl-LPI mediates GLP-1 secretion through GPR119 as this activity is ablated in cells lacking GPR119 and in colonic primary cell preparation from GPR119-/- mice. Similarly, Oleoyl-LPI-mediated insulin secretion is impaired in islets isolated from GPR119-/- mice. On the other hand, GLP-1 secretion is not impaired in cells lacking GPR55 in vitro or in colonic primary cell preparation from GPR55-/- mice. We therefore conclude that GPR119 is the Oleoyl-LPI receptor, upstream of ERK1/2 and cAMP/PKA/CREB pathways, where primarily ERK1/2 is required for GLP-1 secretion, while CREB activation appears dispensable.
    Matched MeSH terms: Mitogen-Activated Protein Kinase 1/genetics; Mitogen-Activated Protein Kinase 1/metabolism
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links