Displaying all 6 publications

Abstract:
Sort:
  1. Ngeow YF, Wong YL, Tan JL, Ong CS, Ng KP, Choo SW
    J Bacteriol, 2012 Dec;194(23):6662.
    PMID: 23144407 DOI: 10.1128/JB.01846-12
    Mycobacterium abscessus is an environmental bacterium with increasing clinical relevance. Here, we report the annotated whole-genome sequence of M. abscessus strain M152.
    Matched MeSH terms: Mycobacterium Infections/microbiology
  2. Ngeow YF, Wee WY, Wong YL, Tan JL, Ongi CS, Ng KP, et al.
    J Bacteriol, 2012 Nov;194(21):6002-3.
    PMID: 23045507 DOI: 10.1128/JB.01455-12
    Mycobacterium abscessus is a ubiquitous, rapidly growing species of nontuberculous mycobacteria that colonizes organic surfaces and is frequently associated with opportunistic infections in humans. We report here the draft genome sequence of Mycobacterium abscessus strain M139, which shows genomic features reported to be characteristic of both Mycobacterium abscessus subsp. abscessus and Mycobacterium abscessus subsp. massiliense.
    Matched MeSH terms: Mycobacterium Infections/microbiology
  3. Atiya N, Sulaiman H, Chong J, Ng KP
    J Infect Dev Ctries, 2015 Mar;9(3):313-6.
    PMID: 25771471 DOI: 10.3855/jidc.5208
    We report the first case of an immunocompromised adult patient presenting with cervicofacial lymphadenitis due to Mycobacterium haemophilum, confirmed using hsp65 gene sequencing and line-probe assays. In resource-limited settings, especially in developing countries, appropriate culture methods and rapid molecular diagnostic tools such as hsp65 gene sequencing for identification of this organism may not be readily available. This may cause M. haemophilum infections to go unrecognised or lead to delays in diagnosis. Lack of heightened awareness about the potential for this mycobacterial species to cause infections may also contribute to possible underestimation of M. haemophilum cases in the developing world.
    Matched MeSH terms: Mycobacterium Infections/microbiology*
  4. Choo SW, Yusoff AM, Wong YL, Wee WY, Ong CS, Ng KP, et al.
    J Bacteriol, 2012 Sep;194(18):5128.
    PMID: 22933758 DOI: 10.1128/JB.01096-12
    The genome of Mycobacterium massiliense M172, isolated from a human sputum sample, was sequenced using Illumina GA IIX technology and found to contain 5,204,460 bp, including putative genes for virulence and antibiotic resistance as well as a 92-kb genomic region most likely to correspond to a mycobacteriophage.
    Matched MeSH terms: Mycobacterium Infections/microbiology
  5. Choo SW, Wee WY, Ngeow YF, Mitchell W, Tan JL, Wong GJ, et al.
    Sci Rep, 2014;4:4061.
    PMID: 24515248 DOI: 10.1038/srep04061
    Mycobacterium abscessus (Ma) is an emerging human pathogen that causes both soft tissue infections and systemic disease. We present the first comparative whole-genome study of Ma strains isolated from patients of wide geographical origin. We found a high proportion of accessory strain-specific genes indicating an open, non-conservative pan-genome structure, and clear evidence of rapid phage-mediated evolution. Although we found fewer virulence factors in Ma compared to M. tuberculosis, our data indicated that Ma evolves rapidly and therefore should be monitored closely for the acquisition of more pathogenic traits. This comparative study provides a better understanding of Ma and forms the basis for future functional work on this important pathogen.
    Matched MeSH terms: Mycobacterium Infections/microbiology*
  6. Issa R, Abdul H, Hashim SH, Seradja VH, Shaili N', Hassan NAM
    J Med Microbiol, 2014 Oct;63(Pt 10):1284-1287.
    PMID: 25038139 DOI: 10.1099/jmm.0.072611-0
    A quantitative real-time PCR (qPCR) followed by high resolution melting (HRM) analysis was developed for the differentiation of Mycobacterium species. Rapid differentiation of Mycobacterium species is necessary for the effective diagnosis and management of tuberculosis. In this study, the 16S rRNA gene was tested as the target since this has been identified as a suitable target for the identification of mycobacteria species. During the temperature gradient and primer optimization process, the melting peak (Tm) analysis was determined at a concentration of 50 ng DNA template and 0.3, 0.4 and 0.5 µM primer. The qPCR assay for the detection of other mycobacterial species was done at the Tm and primer concentration of 62 °C and 0.4 µM, respectively. The HRM analysis generated cluster patterns that were specific and sensitive to distinguished small sequence differences of the Mycobacterium species. This study suggests that the 16S rRNA-based real-time PCR followed by HRM analysis produced unique cluster patterns for species of Mycobacterium and could differentiate the closely related mycobacteria species.
    Matched MeSH terms: Mycobacterium Infections/microbiology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links