Displaying all 12 publications

Abstract:
Sort:
  1. Kee PE, Yim HS, Kondo A, Lan JC, Ng HS
    Mar Drugs, 2021 Aug 17;19(8).
    PMID: 34436302 DOI: 10.3390/md19080463
    Aqueous biphasic electrophoresis system (ABES) incorporates electric fields into the biphasic system to separate the target biomolecules from crude feedstock. Ionic liquid (IL) is regarded as an excellent candidate as the phase-forming components for ABES because of the great electrical conductivity, which can promote the electromigration of biomolecules in ABES, and thereby enhances the separation efficiency of the target biomolecules from crude feedstock. The application of electric fields to the conventional biphasic system expedites the phase settling time of the biphasic system, which eases the subsequent scaling-up steps and reduces the overall processing time of the recovery process. Alkyl sulphate-based IL is a green and economical halide-free surfactant when compared to the other halide-containing IL. The feasibility of halide-free IL-based ABES to recover Kytococcus sedentarius TWHK01 keratinase was studied. Optimum partition coefficient (Ke = 7.53 ± 0.35) and yield (YT = 80.36% ± 0.71) were recorded with IL-ABES comprised of 15.0% (w/w) [EMIM][ESO4], 20.0% (w/w) sodium carbonate and 15% (w/w) crude feedstock. Selectivity (S) of 5.75 ± 0.27 was obtained with the IL-ABES operated at operation time of 5 min with 10 V voltage supplied. Halide-free IL is proven to be a potential phase-forming component of IL-ABES for large-scale recovery of keratinase.
    Matched MeSH terms: Peptide Hydrolases/chemistry*
  2. Gopinath SC, Anbu P, Lakshmipriya T, Tang TH, Chen Y, Hashim U, et al.
    Biomed Res Int, 2015;2015:140726.
    PMID: 26180780 DOI: 10.1155/2015/140726
    Keratinases are proteolytic enzymes predominantly active when keratin substrates are available that attack disulfide bridges in the keratin to convert them from complex to simplified forms. Keratinases are essential in preparation of animal nutrients, protein supplements, leather manufacture, textile processing, detergent formulation, feather meal processing for feed and fertilizer, the pharmaceutical and biomedical industries, and waste management. Accordingly, it is necessary to develop a method for continuous production of keratinase from reliable sources that can be easily managed. Microbial keratinase is less expensive than conventionally produced keratinase and can be obtained from fungi, bacteria, and actinomycetes. In this overview, the expansion of information about microbial keratinases and important considerations in keratinase production are discussed.
    Matched MeSH terms: Peptide Hydrolases/chemistry*
  3. Rajamanikam A, Govind SK
    Parasit Vectors, 2013;6(1):295.
    PMID: 24499467 DOI: 10.1186/1756-3305-6-295
    Blastocystis spp. are one of the most prevalent parasites isolated from patients suffering from diarrhea, flatulence, constipation and vomiting. It's pathogenicity and pathophysiology remains controversial to date. Protease activity and amoebic forms have been reported previously in symptomatic isolates but there has been no conclusive evidence provided to correlate the protease activity and any specific life cycle stage of the parasite thus far.
    Matched MeSH terms: Peptide Hydrolases/chemistry
  4. Baskaran G, Masdor NA, Syed MA, Shukor MY
    ScientificWorldJournal, 2013;2013:678356.
    PMID: 24194687 DOI: 10.1155/2013/678356
    Heavy metals pollution has become a great threat to the world. Since instrumental methods are expensive and need skilled technician, a simple and fast method is needed to determine the presence of heavy metals in the environment. In this study, an inhibitive enzyme assay for heavy metals has been developed using crude proteases from Coriandrum sativum. In this assay, casein was used as a substrate and Coomassie dye was used to denote the completion of casein hydrolysis. In the absence of inhibitors, casein was hydrolysed and the solution became brown, while in the presence of metal ions such as Hg²⁺ and Zn²⁺, the hydrolysis of casein was inhibited and the solution remained blue. Both Hg²⁺ and Zn²⁺ exhibited one-phase binding curve with IC₅₀ values of 3.217 mg/L and 0.727 mg/L, respectively. The limits of detection (LOD) and limits of quantitation (LOQ) for Hg were 0.241 and 0.802 mg/L, respectively, while the LOD and LOQ for Zn were 0.228 and 0.761 mg/L, respectively. The enzyme exhibited broad pH ranges for activity. The crude proteases extracted from Coriandrum sativum showed good potential for the development of a rapid, sensitive, and economic inhibitive assay for the biomonitoring of Hg²⁺ and Zn²⁺ in the aquatic environments.
    Matched MeSH terms: Peptide Hydrolases/chemistry*
  5. Othman R, Kiat TS, Khalid N, Yusof R, Newhouse EI, Newhouse JS, et al.
    J Chem Inf Model, 2008 Aug;48(8):1582-91.
    PMID: 18656912 DOI: 10.1021/ci700388k
    A group of flavanones and their chalcones, isolated from Boesenbergia rotunda L., were previously reported to show varying degrees of noncompetitive inhibitory activities toward Dengue virus type 2 (Den2) protease. Results obtained from automated docking studies are in agreement with experimental data in which the ligands were shown to bind to sites other than the active site of the protease. The calculated K(i) values are very small, indicating that the ligands bind quite well to the allosteric binding site. Greater inhibition by pinostrobin, compared to the other compounds, can be explained by H-bonding interaction with the backbone carbonyl of Lys74, which is bonded to Asp75 (one of the catalytic triad residues). In addition, structure-activity relationship analysis yields structural information that may be useful for designing more effective therapeutic drugs against dengue virus infections.
    Matched MeSH terms: Peptide Hydrolases/chemistry*
  6. Amid M, Manap MY, Zohdi NK
    Biomed Res Int, 2014;2014:259238.
    PMID: 25328883 DOI: 10.1155/2014/259238
    The thermoalkaline protease enzyme from pitaya (Hylocereus polyrhizus) waste was purified by a factor of 221.2 with 71.3% recovery using ammonium sulphate precipitation, gel filtration, and cation exchange chromatography. Gel filtration chromatography together with sodium dodecyl sulphate gel electrophoresis (SDS-PAGE) revealed that the enzyme is monomeric with a molecular weight of 26.7 kDa. The apparent K m and V max of the protease were 2.8 mg/mL and 31.20 u/min, respectively. The optimum pH and temperature were 8.0 and 70°C. The enzyme was highly active and stable over a wide pH range (from pH 3.0 to pH 11.0 with the optimum activity at pH 8.0). The protease has broad specificity toward azocasein, casein, hemoglobin, and gelatine. Activity of the enzyme was inhibited by Fe(2+) and Zn(2+), while protease activity was increased in the presence of Ca(2+) and Mg(2+) and Cu(2+) by factors of 125%, 110%, and 105%, respectively. The alkaline protease showed extreme stability toward surfactants and oxidizing agent. The purified protease exhibited extreme stability in the presence of organic solvents and inhibitors. In addition, the enzyme was relativity stable toward organic solvents and chelating agents, such as ethylenediaminetetraacetic acid (EDTA). The enzyme, derived from pitaya peel, possesses unique characteristics and could be used in various industrial and biotechnological applications.
    Matched MeSH terms: Peptide Hydrolases/chemistry*
  7. Rahman RN, Geok LP, Basri M, Salleh AB
    Bioresour Technol, 2005 Mar;96(4):429-36.
    PMID: 15491823
    The physical factors affecting the production of an organic solvent-tolerant protease from Pseudomonas aeruginosa strain K was investigated. Growth and protease production were detected from 37 to 45 degrees C with 37 degrees C being the optimum temperature for P. aeruginosa. Maximum enzyme activity was achieved at static conditions with 4.0% (v/v) inoculum. Shifting the culture from stationary to shaking condition decreased the protease production (6.0-10.0% v/v). Extracellular organic solvent-tolerant protease was detected over a broad pH range from 6.0 to 9.0. However, the highest yield of protease was observed at pH 7.0. Neutral media increased the protease production compared to acidic or alkaline media.
    Matched MeSH terms: Peptide Hydrolases/chemistry*
  8. Firdaus Raih M, Ahmad HA, Sharum MY, Azizi N, Mohamed R
    Appl. Bioinformatics, 2005;4(2):147-50.
    PMID: 16128617
    Bacterial proteases are an important group of enzymes that have very diverse biochemical and cellular functions. Proteases from prokaryotic sources also have a wide range of uses, either in medicine as pathogenic factors or in industry and therapeutics. ProLysED (Prokaryotic Lysis Enzymes Database), our meta-server integrated database of bacterial proteases, is a useful, albeit very niche, resource. The features include protease classification browsing and searching, organism-specific protease browsing, molecular information and visualisation of protease structures from the Protein Data Bank (PDB) as well as predicted protease structures.
    Matched MeSH terms: Peptide Hydrolases/chemistry*
  9. Nathan S, Rader C, Barbas CF
    Biosci Biotechnol Biochem, 2005 Dec;69(12):2302-11.
    PMID: 16377887
    The isolation of therapeutic and functional protease inhibitors in vitro via combinatorial chemistry and phage display technology has been described previously. Here we report the construction of a combinatorial mouse-human chimeric antibody fragment (Fab) antibody library targeted against the protease of the tropical pathogen, Burkholderia pseudomallei. The resulting library was biopanned against the protease, and selected clones were analyzed for their ability to function as protease inhibitors. Three families of Fabs were identified by restriction fingerprinting, all of which demonstrated high specificity towards the protease of B. pseudomallei. Purified Fabs also demonstrated the capacity to inhibit B. pseudomallei protease activity in vitro, and this inhibitory property was exclusive to the pathogenic protease. Thus these recombinant antibodies are candidates for immunotherapy and tools to aid in further elucidation of the mechanism of action of the B. pseudomallei protease.
    Matched MeSH terms: Peptide Hydrolases/chemistry*
  10. Alhelli AM, Abdul Manap MY, Mohammed AS, Mirhosseini H, Suliman E, Shad Z, et al.
    Int J Mol Sci, 2016 Nov 11;17(11).
    PMID: 27845736
    Penicillium candidum (PCA 1/TT031) synthesizes different types of extracellular proteases. The objective of this study is to optimize polyethylene glycol (PEG)/citrate based on an aqueous two-phase system (ATPS) and Response Surface Methodology (RSM) to purify protease from Penicillium candidum (PCA 1/TT031). The effects of different PEG molecular weights (1500-10,000 g/mol), PEG concentration (9%-20%), concentrations of NaCl (0%-10%) and the citrate buffer (8%-16%) on protease were also studied. The best protease purification could be achieved under the conditions of 9.0% (w/w) PEG 8000, 5.2% NaCl, and 15.9% sodium citrate concentration, which resulted in a one-sided protease partitioning for the bottom phase with a partition coefficient of 0.2, a 6.8-fold protease purification factor, and a yield of 93%. The response surface models displayed a significant (p ≤ 0.05) response which was fit for the variables that were studied as well as a high coefficient of determination (R²). Similarly, the predicted and observed values displayed no significant (p > 0.05) differences. In addition, our enzyme characterization study revealed that Penicillium candidum (PCA 1/TT031) produced a slight neutral protease with a molecular weight between 100 and 140 kDa. The optimal activity of the purified enzyme occurred at a pH of 6.0 and at a temperature of 50 °C. The stability between different pH and temperature ranges along with the effect of chemical metal ions and inhibitors were also studied. Our results reveal that the purified enzyme could be used in the dairy industry such as in accelerated cheese ripening.
    Matched MeSH terms: Peptide Hydrolases/chemistry
  11. Chan SW, Ong GI, Nathan S
    J. Biochem. Mol. Biol., 2004 Sep 30;37(5):556-64.
    PMID: 15479619
    A recombinant Fab monoclonal antibody (Fab) C37, previously obtained by phage display and biopanning of a random antibody fragment library against Burkholderia pseudomallei protease, was expressed in different strains of Escherichia coli. E. coli strain HB2151 was deemed a more suitable host for Fab expression than other E. coli strains when grown in media supplemented with 0.2 % glycerol. The expressed Fab fragment was purified by affinity chromatography on a Protein G-Sepharose column, and the specificity of the recombinant Fab C37 towards B. pseudomallei protease was proven by Western blotting, enzyme-linked immunosorbent assay (ELISA) and by proteolytic activity neutralization. In addition, polyclonal antibodies against B. pseudomallei protease were produced in rabbits immunized with the protease. These were isolated from high titer serum by affinity chromatography on recombinant-Protein A-Sepharose. Purified polyclonal antibody specificity towards B. pseudomallei protease was proven by Western blotting and ELISA.
    Matched MeSH terms: Peptide Hydrolases/chemistry
  12. Nishiki I, Minami T, Chen SC, Itami T, Yoshida T
    J Gen Appl Microbiol, 2012;58(6):457-63.
    PMID: 23337581
    Group C Streptococcus dysgalactiae (GCSD) is a pathogen of farmed fish. Almost all GCSD isolates from Asian countries, including Japan, Taiwan, Malaysia, and China, have a serum opacity factor (SOF-FD). Although the SOF-FD sequences in different GCSD isolates are identical, different opacification activities are observed. Three types of variations were observed in the upstream sequence of the sof-FD gene in GCSD isolates with different SOF-FD activities. Type 1 was characterized by insertion of an IS981-like element into the upstream region of the sof-FD gene. In Type 2, an IS981-like element was inserted into the upstream region in a direction opposite to that in Type 1. In Type 3, no IS element was inserted. Type 1 was predominant among Japanese isolates (129 of 133). Isolates from other Asian countries were generally Type 3 (13 of 16). Except for 1 strain, Type 1 strains exhibited opacification activities with optical densities (ODs)>0.6, while Type 2 and Type 3 strains have low opacification activities (ODs >0.2). Only Type 1 strains have putative -10 and -35 promoter regions upstream of the sof-FD gene, and the expression level of the sof-FD gene was higher in Type 1 strains than in Type 2 and Type 3 strains.
    Matched MeSH terms: Peptide Hydrolases/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links