METHODS: We retrieved 4 previously reported SMCA, performed additional immunohistochemical and targeted next-generation sequencing (NGS). We also investigated the use of NKX3.1 as a marker for SMCA in the context of its prevalence and extent (using H-score) in a mixed cohort of retrospectively and prospectively tested head and neck lesions (n = 223) and non-neoplastic tissues (n = 66).
RESULTS: NKX3.1 positivity was confirmed in normal mucous acini as well as in mucous acinar class of lesions (5/6, mean H-score: 136.7), including mucinous adenocarcinomas (3/4), SG-IPMN (1/1), and microsecretory adenocarcinoma (MSA) (1/1). All SMCA were positive. Fluorescence in situ hybridization for SS18 rearrangements were negative in all successfully tested cases (0/3). NGS was successful in two cases (cases 3 and 4). Case 3 demonstrated a PTEN c.655C>T p.Q219* mutation and a SEC16A::NOTCH1 fusion while case 4 (clinically aggressive) showed a PTEN c.1026+1G>A p.K342 splice site variant, aTP53 c.524G>A p.R175H mutation and a higher tumor mutation burden (29 per Mb). PTEN immunohistochemical loss was confirmed in both cases and a subset of tumor cells showed strong (extreme) staining for P53 in Case 4.
CONCLUSION: Despite a partial myoepithelial phenotype, SMCA, along with mucinous adenocarcinomas/SG-IPMN and MSA, provisionally constitute a mucous acinar class of tumors based on morphology and NKX3.1 expression. Like salivary mucinous adenocarcinomas/SG-IPMN, SMCA also show alterations of the PTEN/PI3K/AKT pathway and may show progressive molecular alterations. We document the first extramammary tumor with a SEC16A::NOTCH1 fusion.
MATERIALS AND METHODS: The OncoCarta(™) panel v1.0 assay was used to characterize oncogenic mutations. In addition, exons 4-11 of the TP53 gene were sequenced. Statistical analyses were conducted to identify associations between mutations and selected clinico-pathological characteristics and risk habits.
RESULTS: Oncogenic mutations were detected in PIK3CA (5.7%) and HRAS (2.4%). Mutations in TP53 were observed in 27.7% (31/112) of the OSCC specimens. Oncogenic mutations were found more frequently in non-smokers (p = 0.049) and TP53 truncating mutations were more common in patients with no risk habits (p = 0.019). Patients with mutations had worse overall survival compared to those with absence of mutations; and patients who harbored DNA binding domain (DBD) and L2/L3/LSH mutations showed a worse survival probability compared to those patients with wild type TP53. The majority of the oncogenic and TP53 mutations were G:C > A:T and A:T > G:C base transitions, regardless of the different risk habits.
CONCLUSION: Hotspot oncogenic mutations which are frequently present in common solid tumors are exceedingly rare in OSCC. Despite differences in risk habit exposure, the mutation frequency of PIK3CA and HRAS in Asian OSCC were similar to that reported in OSCC among Caucasians, whereas TP53 mutations rates were significantly lower. The lack of actionable hotspot mutations argue strongly for the need to comprehensively characterize gene mutations associated with OSCC for the development of new diagnostic and therapeutic tools.
METHODS: iPC clones were generated from two colorectal cancer (CRC) cell lines by retroviral transduction of the Yamanaka factors. The iPC clones obtained were characterized by morphology, expression of pluripotency markers and the ability to undergo in vitro tri-lineage differentiation. Genome-wide miRNA profiles of the iPC cells were obtained by microarray analysis and bioinformatics interrogation. Gene expression was done by real-time RT-PCR and immuno-staining; MET/EMT protein levels were determined by western blot analysis.
RESULTS: The CRC-iPC cells showed embryonic stem cell-like features and tri-lineage differentiation abilities. The spontaneously-differentiated post-iPC cells obtained were highly similar to the parental CRC cells. However, down-regulated pluripotency gene expression and failure to form teratoma indicated that the CRC-iPC cells had only attained partial pluripotency. The CRC-iPC cells shared similarities in the genome-wide miRNA expression profiles of both cancer and pluripotent embryonic stem cells. One hundred and two differentially-expressed miRNAs were identified in the CRC-iPC cells, which were predicted by bioinformatics analysis be closely involved in regulating cellular pluripotency and the expression of the MET/EMT genes, possibly via the phosphatidylinositol-3 kinases-protein kinase B (PI3K-Akt) and transforming growth factor beta (TGF-β) signaling pathways. Irregular and inconsistent expression patterns of the EMT vimentin and Snai1 and MET E-cadherin and occludin proteins were observed in the four CRC-iPC clones analyzed, which suggested an epithelial/mesenchymal hybrid phenotype in the partially reprogrammed CRC cells. MET/EMT gene expression was also generally reversed on re-differentiation, also suggesting epigenetic regulation.
CONCLUSIONS: Our data support the elite model for cancer cell-reprogramming in which only a selected subset of cancer may be fully reprogrammed; partial cancer cell reprogramming may also elicit an epithelial-mesenchymal mixed phenotype, and highlight opportunities and challenges in cancer cell-reprogramming.