Displaying all 7 publications

Abstract:
Sort:
  1. Ahmad SJ, Zin NM
    Data Brief, 2021 Apr;35:106768.
    PMID: 33604422 DOI: 10.1016/j.dib.2021.106768
    The data genome sequence of SUK 48 consists of 8,341,706 bp, comprising of one contig with a high G + C content of 72.33%. The genome sequence encodes for 67 tRNAs and 21 rRNAs in one contig. SUK48 was found to have low similarities with other Streptomyces sp. (81-93% ANI indices) indicating that the isolated strain has a unique genome property and is presumably a novel species. This genome includes 34 genetic clusters responsible for the synthesis of secondary metabolites, including two polyketide synthase (PKS) clusters; one PKS type II cluster gene, one PKS gene cluster type III, five NRPS genetic clusters, and five PKS/NRPS hybrid clusters.
    Matched MeSH terms: Polyketide Synthases
  2. Baharum H, Morita H, Tomitsuka A, Lee FC, Ng KY, Rahim RA, et al.
    Mar Biotechnol (NY), 2011 Oct;13(5):845-56.
    PMID: 21181422 DOI: 10.1007/s10126-010-9344-5
    Type III polyketide synthases (PKSs) produce an array of metabolites with diverse functions. In this study, we have cloned the complete reading frame encoding type III PKS (SbPKS) from a brown seaweed, Sargassum binderi, and characterized the activity of its recombinant protein biochemically. The deduced amino acid sequence of SbPKS is 414 residues in length, sharing a higher sequence similarity with bacterial PKSs (38% identity) than with plant PKSs. The Cys-His-Asn catalytic triad of PKS is conserved in SbPKS with differences in some of the residues lining the active and CoA binding sites. The wild-type SbPKS displayed broad starter substrate specificity to aliphatic long-chain acyl-CoAs (C(6)-C(14)) to produce tri- and tetraketide pyrones. Mutations at H(331) and N(364) caused complete loss of its activity, thus suggesting that these two residues are the catalytic residues for SbPKS as in other type III PKSs. Furthermore, H227G, H227G/L366V substitutions resulted in increased tetraketide-forming activity, while wild-type SbPKS produces triketide α-pyrone as a major product. On the other hand, mutant H227G/L366V/F93A/V95A demonstrated a dramatic decrease of tetraketide pyrone formation. These observations suggest that His(227) and Leu(366) play an important role for the polyketide elongation reaction in SbPKS. The conformational changes in protein structure especially the cavity of the active site may have more significant effect to the activity of SbPKS compared with changes in individual residues.
    Matched MeSH terms: Polyketide Synthases/classification; Polyketide Synthases/genetics; Polyketide Synthases/metabolism*
  3. Goh LPW, Mahmud F, Lee PC
    Data Brief, 2021 Jun;36:107128.
    PMID: 34095378 DOI: 10.1016/j.dib.2021.107128
    The genome data of Streptomyces sp. FH025 comprised of 8,381,474 bp with a high GC content of 72.51%. The genome contains 7035 coding sequences spanning 1261 contigs. Streptomyces sp. FH025 contains 57 secondary metabolite gene clusters including polyketide synthase, nonribosomal polyketide synthase and other biosynthetic pathways such as amglyccycl, butyrolactone, terpenes, siderophores, lanthipeptide-class-iv, and ladderane. 16S rRNA analysis of Streptomyces sp. FH025 is similar to the Streptomyces genus. This whole genome project has been deposited at NCBI under the accession JAFLNG000000000.
    Matched MeSH terms: Polyketide Synthases
  4. Yap HY, Chooi YH, Fung SY, Ng ST, Tan CS, Tan NH
    PLoS One, 2015;10(11):e0143549.
    PMID: 26606395 DOI: 10.1371/journal.pone.0143549
    Lignosus rhinocerotis (Cooke) Ryvarden (tiger milk mushroom) has long been known for its nutritional and medicinal benefits among the local communities in Southeast Asia. However, the molecular and genetic basis of its medicinal and nutraceutical properties at transcriptional level have not been investigated. In this study, the transcriptome of L. rhinocerotis sclerotium, the part with medicinal value, was analyzed using high-throughput Illumina HiSeqTM platform with good sequencing quality and alignment results. A total of 3,673, 117, and 59,649 events of alternative splicing, novel transcripts, and SNP variation were found to enrich its current genome database. A large number of transcripts were expressed and involved in the processing of gene information and carbohydrate metabolism. A few highly expressed genes encoding the cysteine-rich cerato-platanin, hydrophobins, and sugar-binding lectins were identified and their possible roles in L. rhinocerotis were discussed. Genes encoding enzymes involved in the biosynthesis of glucans, six gene clusters encoding four terpene synthases and one each of non-ribosomal peptide synthetase and polyketide synthase, and 109 transcribed cytochrome P450 sequences were also identified in the transcriptome. The data from this study forms a valuable foundation for future research in the exploitation of this mushroom in pharmacological and industrial applications.
    Matched MeSH terms: Polyketide Synthases
  5. Iyadorai T, Mariappan V, Vellasamy KM, Wanyiri JW, Roslani AC, Lee GK, et al.
    PLoS One, 2020;15(1):e0228217.
    PMID: 31990962 DOI: 10.1371/journal.pone.0228217
    Escherichia coli (E. coli) from the B2 phylogenetic group is implicated in colorectal cancer (CRC) as it possesses a genomic island, termed polyketide synthetase (pks), which codes for the synthesis of colibactin, a genotoxin that induces DNA damage, cell cycle arrest, mutations and chromosomal instability in eukaryotic cells. The aim of this study was to detect and compare the prevalence of E. coli expressing pks (pks+ E. coli) in CRC patients and healthy controls followed by investigating the virulence triggered by pks+ E. coli using an in-vitro model. Mucosal colon tissues were collected and processed to determine the presence of pks+ E. coli. Thereafter, primary colon epithelial (PCE) and colorectal carcinoma (HCT116) cell lines were used to detect cytopathic response to the isolated pks+ E. coli strains. Our results showed 16.7% and 4.3% of CRC and healthy controls, respectively were pks+ E. coli. Further, PCE displayed syncytia and cell swelling and HCT116 cells, megalocytosis, in response to treatment with the isolated pks+ E. coli strains. In conclusion, pks+ E. coli was more often isolated from tissue of CRC patients compared to healthy individuals, and our in-vitro assays suggest these isolated strains may be involved in the initiation and development of CRC.
    Matched MeSH terms: Polyketide Synthases/metabolism*
  6. Zainudin NA, Condon B, De Bruyne L, Van Poucke C, Bi Q, Li W, et al.
    Mol Plant Microbe Interact, 2015 Oct;28(10):1130-41.
    PMID: 26168137 DOI: 10.1094/MPMI-03-15-0068-R
    The Sfp-type 4'-phosphopantetheinyl transferase Ppt1 is required for activation of nonribosomal peptide synthetases, including α-aminoadipate reductase (AAR) for lysine biosynthesis and polyketide synthases, enzymes that biosynthesize peptide and polyketide secondary metabolites, respectively. Deletion of the PPT1 gene, from the maize pathogen Cochliobolus heterostrophus and the rice pathogen Cochliobolus miyabeanus, yielded strains that were significantly reduced in virulence to their hosts. In addition, ppt1 mutants of C. heterostrophus race T and Cochliobolus victoriae were unable to biosynthesize the host-selective toxins (HST) T-toxin and victorin, respectively, as judged by bioassays. Interestingly, ppt1 mutants of C. miyabeanus were shown to produce tenfold higher levels of the sesterterpene-type non-HST ophiobolin A, as compared with the wild-type strain. The ppt1 strains of all species were also reduced in tolerance to oxidative stress and iron depletion; both phenotypes are associated with inability to produce extracellular siderophores biosynthesized by the nonribosomal peptide synthetase Nps6. Colony surfaces were hydrophilic, a trait previously associated with absence of C. heterostrophus Nps4. Mutants were decreased in asexual sporulation and C. heterostrophus strains were female-sterile in sexual crosses; the latter phenotype was observed previously with mutants lacking Nps2, which produces an intracellular siderophore. As expected, mutants were albino, since they cannot produce the polyketide melanin and were auxotrophic for lysine because they lack an AAR.
    Matched MeSH terms: Polyketide Synthases/genetics; Polyketide Synthases/metabolism
  7. Mangzira Kemung H, Tan LT, Chan KG, Ser HL, Law JW, Lee LH, et al.
    Molecules, 2020 Aug 03;25(15).
    PMID: 32756432 DOI: 10.3390/molecules25153545
    There is an urgent need to search for new antibiotics to counter the growing number of antibiotic-resistant bacterial strains, one of which is methicillin-resistant Staphylococcus aureus (MRSA). Herein, we report a Streptomyces sp. strain MUSC 125 from mangrove soil in Malaysia which was identified using 16S rRNA phylogenetic and phenotypic analysis. The methanolic extract of strain MUSC 125 showed anti-MRSA, anti-biofilm and antioxidant activities. Strain MUSC 125 was further screened for the presence of secondary metabolite biosynthetic genes. Our results indicated that both polyketide synthase (pks) gene clusters, pksI and pksII, were detected in strain MUSC 125 by PCR amplification. In addition, gas chromatography-mass spectroscopy (GC-MS) detected the presence of different chemicals in the methanolic extract. Based on the GC-MS analysis, eight known compounds were detected suggesting their contribution towards the anti-MRSA and anti-biofilm activities observed. Overall, the study bolsters the potential of strain MUSC 125 as a promising source of anti-MRSA and antibiofilm compounds and warrants further investigation.
    Matched MeSH terms: Polyketide Synthases/genetics
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links