Affiliations 

  • 1 Biofunctional Molecule Exploratory Research Group (BMEX), School of Pharmacy, Monash University Malaysia, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia
  • 2 Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia
  • 3 Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
Molecules, 2020 Aug 03;25(15).
PMID: 32756432 DOI: 10.3390/molecules25153545

Abstract

There is an urgent need to search for new antibiotics to counter the growing number of antibiotic-resistant bacterial strains, one of which is methicillin-resistant Staphylococcus aureus (MRSA). Herein, we report a Streptomyces sp. strain MUSC 125 from mangrove soil in Malaysia which was identified using 16S rRNA phylogenetic and phenotypic analysis. The methanolic extract of strain MUSC 125 showed anti-MRSA, anti-biofilm and antioxidant activities. Strain MUSC 125 was further screened for the presence of secondary metabolite biosynthetic genes. Our results indicated that both polyketide synthase (pks) gene clusters, pksI and pksII, were detected in strain MUSC 125 by PCR amplification. In addition, gas chromatography-mass spectroscopy (GC-MS) detected the presence of different chemicals in the methanolic extract. Based on the GC-MS analysis, eight known compounds were detected suggesting their contribution towards the anti-MRSA and anti-biofilm activities observed. Overall, the study bolsters the potential of strain MUSC 125 as a promising source of anti-MRSA and antibiofilm compounds and warrants further investigation.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.