Displaying publications 1 - 20 of 737 in total

Abstract:
Sort:
  1. Mohd Nizam T, Binting RA, Mohd Saari S, Kumar TV, Muhammad M, Satim H, et al.
    PMID: 27418867 MyJurnal
    This study aimed to determine the minimum inhibitory concentrations (MICs) of various antifungal agents against moulds isolated from dermatological specimens.
    Matched MeSH terms: Microbial Sensitivity Tests
  2. Tissera S, Lee SM
    PMID: 23966820
    This was a preliminary study to test for the presence of multiple antibiotic-resistant extended spectrum β-lactamase (ESBL) producing bacteria in Malaysian urban surface waters. Although the literature review revealed several published papers on clinical ESBL isolates in Malaysia, none were found on ESBL isolates obtained from local surface waters.
    Matched MeSH terms: Microbial Sensitivity Tests
  3. Mohd Sazlly Lim S, Heffernan AJ, Roberts JA, Sime FB
    Microb. Drug Resist., 2020 Sep 08.
    PMID: 32898467 DOI: 10.1089/mdr.2020.0197
    Background and Objective:
    Combination therapy may be a treatment option against carbapenem-resistant Acinetobacter baumannii (CR-AB) infections. In this study, we explored the utility of fosfomycin in combination with meropenem (FOS/MEM) against CR-AB isolates.
    Materials and Methods:
    Screening of synergistic activity of FOS/MEM was performed using the checkerboard assay. A pharmacokinetic/pharmacodynamic analysis was performed for various FOS/MEM regimens using Monte Carlo simulations.
    Results:
    The minimum inhibitory concentration (MIC) required to inhibit the growth of 50% of the isolates (MIC50) and MIC required to inhibit the growth of 90% of the isolates (MIC90) of FOS and MEM were reduced fourfold and twofold, respectively. The combination was synergistic against 14/50 isolates. No antagonism was observed. Sixteen out of fifty isolates had MEM MICs of ≤8 mg/L when subjected to combination therapy, compared to none with monotherapy. Forty-one out of 50 isolates had FOS MICs of ≤128 mg/L when subjected to combination therapy, compared to 17/50 isolates with monotherapy. The cumulative fraction response for MEM and FOS improved from 0% to 40% and 40% to 80%, with combination therapy, respectively.
    Conclusions:
    Addition of MEM improved the in vitro activity of FOS against the CR-AB isolates. FOS/MEM could be a plausible option to treat CR-AB for a small fraction of isolates.
    Matched MeSH terms: Microbial Sensitivity Tests
  4. Al-Othrubi SM, Hanafiah A, Radu S, Neoh H, Jamal R
    Saudi Med J, 2011 Apr;32(4):400-6.
    PMID: 21484001
    To find out the prevalence and antimicrobial susceptibility of Vibrio parahaemolyticus in seafoods and environmental sources.
    Matched MeSH terms: Microbial Sensitivity Tests*
  5. Sia KJ, Tang IP, Prepageran N
    Med J Malaysia, 2013;68(1):6-9.
    PMID: 23466758 MyJurnal
    OBJECTIVES: To identify the common bacteria of otorhinolaryngological (ORL) infection in three general hospitals in the state of Sarawak, East Malaysia and to determine the antibiotic sensitivity of the common bacteria to update local antibiotic policy.
    METHODS: All specimens with positive monoclonal culture, received from inpatient and outpatient Otorhinolaryngology Department in the year 2009 and 2010 were included in the study. Patients' demographics, nature of specimens, bacterial isolates and antibiotic sensitivity were analysed by using the Statistical Package for the Social Sciences (SPSS).
    RESULTS: A total 244 positive monoclonal cultures were identified. Staphylococcus species and Gram negative bacilli were the commonest bacteria of ORL infections. Common ORL bacteria remain sensitive to our front line antibiotics. There are a number of multi-drug resistant isolates of MRSA, ESBL Klebsiella pneumoniae and Acinetobacter baumanii in the hospital-acquired infections.
    CONCLUSION: Although resistance to antimicrobial agents is growing worldwide, first line antibiotics still show significant therapeutic advantage in our local setting. The low resistance of bacterial isolates in our community reflects judicious use of antibiotics in our routine clinical practices.

    Study site: Sarawak General Hospital, Sibu Hospital and Miri Hospital
    Matched MeSH terms: Microbial Sensitivity Tests*
  6. Mai-Ngam K, Chumningan P
    Med J Malaysia, 2004 May;59 Suppl B:137-8.
    PMID: 15468856
    Matched MeSH terms: Microbial Sensitivity Tests*
  7. Santhanam J, Yahaya N, Aziz MN
    Med J Malaysia, 2013 Aug;68(4):343-7.
    PMID: 24145264
    Resistance to antifungal agents has increased in Candida spp., especially in non-albicans species. Recent findings reported a strikingly low susceptibility in Candida spp. towards itraconazole in Malaysia. In this study, a colorimetric broth dilution method was utilized to determine the susceptibility of Candida spp. isolated in Kuala Lumpur Hospital within a six month period. A total of 82 isolates from blood, peritoneal and other fluids were tested against 8 antifungal agents using the Sensititre Yeast One method. These comprised of 32 (39%) C. albicans, 17 (20.7%) C. glabrata, 15 (18.3%) C. tropicalis, 13 (15.9%) C. parapsilosis, two (2.4%) C. sake and 1 (1.2%) each of C. pelliculosa, C. rugosa and Pichia etchellsii/carsonii. Overall, susceptibility of all isolates to caspofungin was 98.8%, amphotericin B, 97.6%; 5-flucytosine, 97.6%; voriconazole, 97.6%; posaconazole, 87.8%; fluconazole, 82.9%; ketoconazole, 79.3%; and itraconazole, 56.1%. A total of 18 Candida spp. isolates (22 %) were resistant to at least one antifungal agent tested, and half of these were resistant to three or more antifungal agents. C. glabrata was the most frequently identified resistant species (10 isolates), followed by C. tropicalis (4 isolates), C. parapsilosis (3 isolates) and C. albicans (1 isolate). Resistance was highest against ketoconazole (20.9%), followed by itraconazole (13.4%). However, 30.5% of isolates were susceptible-dose dependent towards itraconazole. Long-term usage of itraconazole in Malaysia and a predominance of nonalbicans species may account for the results observed in this study. In conclusion, susceptibility to antifungal drugs is species-dependent among Candida spp.; reduced susceptibility to itraconazole is concomitant with the high number of non-albicans Candida species isolated in Malaysia.
    Matched MeSH terms: Microbial Sensitivity Tests
  8. Nur Hilda Hanina AW, Intan NS, Syafinaz AN, Zalinah A, Lailatul Akmar MN, Devnani AS
    Med J Malaysia, 2015 Jun;70(3):182-7.
    PMID: 26248782 MyJurnal
    INTRODUCTION: Patients suffering from diabetes mellitus (DM) frequently present with infected diabetic foot ulcers (DFU). This study was done to record the anatomical site and the grade of ulcers according to Wagner's classification and to culture the microorganisms from the ulcers and determine their antibiotic sensitivity.
    MATERIALS AND METHODS: Prospective study was conducted on 77 diabetic patients who were admitted with DFU from June until December 2011. Patients with end stage renal failure, those who had previous vascular surgery on the involved limb, or hyperbaric oxygen or maggot therapy for the ulcers, or had unrelated skin diseases around the involved foot were excluded from the study. Specimens for culture were obtained by a sterile swab stick or tissue sample was taken from the wound with sterile surgical instruments.
    RESULTS: Wagner's grade III and IV ulcers were most common. Majority of the ulcers involved toes (48%). Gram negative microorganisms were predominantly isolated (71.1%). Gram positive microorganisms were less frequently cultured (27.7%). Fungus was cultured from one sample (1.2%). Gram negative microorganisms were sensitive to aminoglycosides, cephalosporins or β-lactamase inhibitors. More than 40% were resistant to ampicillin. Gram positive microorganisms were sensitive to cloxacillin. MRSA were sensitive to vancomycin.
    CONCLUSION: Empirical use of antibiotics should be curtailed to prevent development of drug resistant strains of microorganisms and MRSA. We suggest use of antiseptic solutions to clean the ulcers until antibiotic sensitivity report is available. Results of our altered treatment regimen we plan to publish in a later study.
    Matched MeSH terms: Microbial Sensitivity Tests
  9. Poh-Hwa, T., Yoke-Kqueen, C., Indu Bala, J., Son, R.
    MyJurnal
    The aim of this work was to investigate the antioxidant and antimicrobial of Phyllanthus amarus, Phyllanthus niruri and Phyllanthus urinaria. P. niruri was found to possess the highest antioxidant activity, the activity decreased in the order P. niruri > P. amarus > P. urinaria for water extract. However, the activity decreased in the order P. niruri > P. urinaria > P. amarus for methanol extract. The result correlation between the antioxidant activity and total phenolic content revealed a positive correlation of 0.954 < r 2 < 1.000 for both water and methanol extract. Methanol extract showed higher total phenolic content and antioxidant activity as compared with water extract. Lowest Minimum Inhibitory Concentration (MIC) value for water extract against the selected microorganism was >2.5 mg/mL meanwhile, for methanol extract was 2.5 mg/mL and >0.625 mg/mL were the value for water and methanol extract. Methanol extract showed better inhibition potential than water extract
    Matched MeSH terms: Microbial Sensitivity Tests
  10. Bankur PK, Mathew M, Almalki SA, Jalaluddin M, Jayanti I, Durgaraju M
    J Contemp Dent Pract, 2019 Sep 01;20(9):1041-1044.
    PMID: 31797826
    AIM: The aim of the present study was to evaluate the antibacterial efficacy of various concentrations of Eucalyptus globulus leaf extract on periodontal pathogens.

    MATERIALS AND METHODS: Matured, healthy and disease-free leaves of Eucalyptus globulus were collected. The leaves were washed under tap water and finally dried in an oven at a temperature of 45°C for 48 hours. The dried plants were ground in an electric blender to make them into a powder. The powder was mixed with 100% ethanol and kept it inside a shaker overnight at 35°C. The mixture was centrifuged for 10 minutes at 2,500 rpm. Three different concentrations (10%, 50%, and 100% v/v) were used as antibacterial agents. Chlorhexidine (0.2%) was considered as positive control and dimethyl formamide was considered as negative control against P. gingivalis and A. actinomycetemcomitans. The disc diffusion method was used to determine the extract's antibacterial activity against the test organisms. A digital Vernier caliper was used to measure the diameter of antibacterial activity showing the zone of inhibition in millimeters.

    RESULTS: Eucalyptus globulus with 100% concentration showed a maximum zone of inhibition against A. actinomycetemcomitans and P. gingivalis (5.38 ± 0.32 mm, 4.82 ± 0.11 mm) followed by 50% and 10% accordingly. The negative control of dimethyl formamide showed a zone of inhibition of 0.48 ± 0.96 mm and 0.63 ± 0.20 mm against A. actinomycetemcomitans and P. gingivalis. The positive control of 0.2% chlorhexidine showed a zone of inhibition of 8.46 ± 1.02 mm and 7.18 ± 0.54 mm against A. actinomycetemcomitans and P. gingivalis. The ANOVA test showed a highly significant antibacterial efficacy in 0.2% chlorhexidine and 100% concentration Eucalyptus globulus.

    CONCLUSION: A significant maximum zone of inhibition against A. actinomycetemcomitans and P. gingivalis was showed by 100% concentration of Eucalyptus globulus.

    CLINICAL SIGNIFICANCE: Other than the systemic diseases treatment, Eucalyptus globulus also serves as an effective promising alternative to antibiotics in the prevention of oral infections because of the natural phytochemicals existing in them.

    Matched MeSH terms: Microbial Sensitivity Tests
  11. Othman M, Loh HS, Wiart C, Khoo TJ, Lim KH, Ting KN
    J Microbiol Methods, 2011 Feb;84(2):161-6.
    PMID: 21094190 DOI: 10.1016/j.mimet.2010.11.008
    The search for antimicrobial agents from plants has been a growing interest in the last few decades. However, results generated from many of these studies cannot be directly compared due to the absence of standardization in particular antimicrobial methods employed. The need for established methods with consistent results for the evaluation of antimicrobial activities from plant extracts has been proposed by many researchers. Nevertheless, there are still many studies reported in the literature describing different methodologies. The aim of this study was to find optimal methods to give consistent quantitative antimicrobial results for studying plant extracts. Three different agar-based assays (pour plate disc diffusion (PPDD), streak plate disc diffusion (SPDD) and well-in agar (WA)) and one broth-based (turbidometric (TB)) assay were used in this study. Extracts from two plant species (Duabanga grandiflora and Acalypha wilkesiana) were tested on two bacterial species, namely Escherichia coli and Staphylococcus aureus. Amongst the agar-based assays, PPDD produced the most reproducible results. TB was able to show the inhibitory effects of the test samples on the growth kinetic of the bacteria including plant extracts with low polarity. We propose that both agar- (i.e PPDD) and broth-based assays should be employed when assessing the antimicrobial activity of plant crude extracts.
    Matched MeSH terms: Microbial Sensitivity Tests/methods*; Microbial Sensitivity Tests/standards*
  12. Balakrishnan S, Shahid Nj, Fairuz T, Ramdhan I
    Malays Orthop J, 2014 Mar;8(1):42-4.
    PMID: 25347049 DOI: 10.5704/MOJ.1403.017
    Diabetic foot infections make up a significant number of orthopaedic ward admissions. The recommended choice of empirical antibiotics used in Malaysia for diabetic foot infections is based on the National Antibiotic Guidelines 2008. The pattern of bacteriology and the effectiveness of the treatment of diabetic foot infections based on this guideline were analyzed through a retrospective study in our hospital. Data over a period of one year (May 2012- April 2013) was analyzed, and 96 patients were included in this study. Polymicrobial growth (58%) was mainly isolated, followed with an almost equal percentage of gram-negative (22%) and gram-positive organisms (20%). The empirical antibiotics based on the national antibiotic guidelines were used as definitive antibiotics in 85% of the cases. Although there was slight variation in the pattern of organisms as compared to other studies conducted in this country, the high rate of positive clinical response proved that the antibiotic guideline was still effective in diabetic foot infection treatment.

    KEY WORDS: Diabetic foot infections, National Antibiotic Guidelines, Culture and Sensitivity.

    Matched MeSH terms: Microbial Sensitivity Tests
  13. Abdsamah O, Zaidi NT, Sule AB
    Pak J Pharm Sci, 2012 Jul;25(3):675-8.
    PMID: 22713960
    Present study aimed to investigate the in vitro antimicrobial activity of the chloroform, methanol and aqueous extracts of Ficus deltoidea at 10mg/ml, 20mg/ml and 50 mg/ml, respectively using the disc diffusion method against 2 Gram positive {Staphylococcus aureus (IMR S-277), Bacillus subtilis (IMR K-1)}, 2 Gram negative {Escherichia coli (IMR E-940), Pseudomonas aeroginosa (IMR P-84)} and 1 fungal strain, Candida albicans (IMR C-44). All the extracts showed inhibitory activity on the fungus, Gram-positive and Gram-negative bacteria strains tested except for the chloroform and aqueous extracts on B. subtilis, E. coli, and P. aeroginosa. The methanol extract exhibited good antibacterial and antifungal activities against the test organisms. The methanol extract significantly inhibited the growth of S. aureus forming a wide inhibition zone (15.67 ± 0.58 mm) and lowest minimum inhibitory concentration (MIC) value (3.125 mg/ml). B. subtilis was the least sensitive to the chloroform extract (6.33 ± 0.58 mm) and highest minimum inhibitory concentration (MIC) value (25 mg/ml). Antimicrobial activity of F. deltoidea in vitro further justifies its utility in folkleric medicines for the treatment of infections of microbial origin.
    Matched MeSH terms: Microbial Sensitivity Tests
  14. Puthucheary SD, Chen ST, Dugdale AE
    Med J Malaya, 1972 Jun;26(4):262-5.
    PMID: 5069415
    Matched MeSH terms: Microbial Sensitivity Tests
  15. Noor Shafina MN, Nor Azizah A, Mohammad AR, Faisal MF, Mohamad Ikhsan S, Hafizah Z, et al.
    Med J Malaysia, 2015 Jun;70(3):153-7.
    PMID: 26248777 MyJurnal
    INTRODUCTION: Urinary tract infection (UTI) is a common bacterial infection affecting children and therefore, prompt recognition and accurate antimicrobial management are vital to prevent kidney damage. This study aims to determine the bacterial pathogens and their patterns of antimicrobial resistance in children presenting with UTI.
    METHODS: A retrospective study of 721 cases, involving children between the ages of 1-day old to 13 years old with culture-proven UTI in Selayang Hospital, Malaysia between January 2007 and December 2011. The bacterial pathogens and antibiotic resistance patterns in the total population, prophylaxis and no prophylaxis groups were studied.
    RESULTS: The 3 most common organisms isolated in the total population were E.Coli (41.6%), Klebsiella spp. (21.2%) and Enterococcus spp. (11.0%). With regards to the antibiotic resistance, E.Coli resistance rates to ampicillin, cefuroxime and gentamicin were 67.7%, 15.3% and 7.3% respectively. Ampicillin-resistance was also highest in Klebsiella spp. (84.3%), Enterococcus spp. (15.5%) and Proteus spp. (55.5%).
    CONCLUSION: E.coli remains to be the leading bacterial pathogen causing UTI in children, with ampicillin-resistance occurring in more than half of these cases. Therefore, accurate choice of antibiotics is important to ensure optimal outcome. In our study, cefuroxime and gentamicin have lower antibiotic resistance rates and can be used in the treatment of UTI in children.
    Matched MeSH terms: Microbial Sensitivity Tests
  16. Sartelli M, Weber DG, Ruppé E, Bassetti M, Wright BJ, Ansaloni L, et al.
    World J Emerg Surg, 2016;11:33.
    PMID: 27429642 DOI: 10.1186/s13017-016-0089-y
    Intra-abdominal infections (IAI) are an important cause of morbidity and are frequently associated with poor prognosis, particularly in high-risk patients. The cornerstones in the management of complicated IAIs are timely effective source control with appropriate antimicrobial therapy. Empiric antimicrobial therapy is important in the management of intra-abdominal infections and must be broad enough to cover all likely organisms because inappropriate initial antimicrobial therapy is associated with poor patient outcomes and the development of bacterial resistance. The overuse of antimicrobials is widely accepted as a major driver of some emerging infections (such as C. difficile), the selection of resistant pathogens in individual patients, and for the continued development of antimicrobial resistance globally. The growing emergence of multi-drug resistant organisms and the limited development of new agents available to counteract them have caused an impending crisis with alarming implications, especially with regards to Gram-negative bacteria. An international task force from 79 different countries has joined this project by sharing a document on the rational use of antimicrobials for patients with IAIs. The project has been termed AGORA (Antimicrobials: A Global Alliance for Optimizing their Rational Use in Intra-Abdominal Infections). The authors hope that AGORA, involving many of the world's leading experts, can actively raise awareness in health workers and can improve prescribing behavior in treating IAIs.
    Matched MeSH terms: Microbial Sensitivity Tests
  17. Sharma N, Singh V, Pandey AK, Mishra BN, Kulsoom M, Dasgupta N, et al.
    Biomolecules, 2019 11 21;9(12).
    PMID: 31766572 DOI: 10.3390/biom9120764
    Nanoparticles (NPs) possessing antibacterial activity represent an effective way of overcoming bacterial resistance. In the present work, we report a novel formulation of a nanoantibiotic formed using Ampicillin/sulbactam (Ams) and a zinc oxide nanoparticle (ZnO NP). 'ZnO NP-Ams' nanoantibiotic formulation is optimized using response surface methodology coupled genetic algorithm approach. The optimized formulation of nanoantibiotic (ZnO NP: 49.9 μg/mL; Ams: 33.6 μg/mL; incubation time: 27 h) demonstrated 15% enhanced activity compared to the unoptimized formulation against K. pneumoniae. The reactive oxygen species (ROS) generation was directly proportional to the interaction time of nanoantibiotic and K. pneumoniae after the initial lag phase of ~18 h as evident from 2'-7'-Dichlorodihydrofluorescein diacetate assay. A low minimum inhibitory concentration (6.25 μg/mL) of nanoantibiotic formulation reveals that even a low concentration of nanoantibiotic can prove to be effective against K. pneumoniae. The importance of nanoantibiotic formulation is also evident by the fact that the 100 μg/mL of Ams and 25 µg of ZnO NP was required individually to inhibit the growth of K. pneumonia, whereas only 6.25 μg/mL of optimized nanoantibiotic formulation (ZnO NP and Ams in the ratio of 49.9: 33.6 in μg/mL and conjugation time of 27 h) was needed for the same.
    Matched MeSH terms: Microbial Sensitivity Tests
  18. Verma R, Boshoff HIM, Arora K, Bairy I, Tiwari M, Varadaraj BG, et al.
    Drug Dev Res, 2020 05;81(3):315-328.
    PMID: 31782209 DOI: 10.1002/ddr.21623
    A new series of novel triclosan (2,4,4'-trichloro-2'-hydroxydiphenylether) analogues were designed, synthesized, and screened for their in vitro antimycobacterial and antibacterial activities. Most of the compounds showed significant activity against Mycobacterium tuberculosis H37Rv strain with minimum inhibitory concentration (MIC) values in 20-40 μM range in GAST/Fe medium when compared with triclosan (43 μM) in the first week of assay, and after additional incubation, seven compounds, that is, 2a, 2c, 2g, 2h, 2i, 2j, and 2m, exhibited MIC values at the concentration of 20-40 μM. The compounds also showed more significant activity against Bacillus subtilis and Staphylococcus aureus. The synthesized compounds showed druggable properties, and the predicted ADME (absorption, distribution, metabolism, and excretion) properties were within the acceptable limits. The in silico studies predicted better interactions of compounds with target protein residues and a higher dock score in comparison with triclosan. Molecular dynamics simulation study of the most active compound 2i was performed in order to further explore the stability of the protein-ligand complex and the protein-ligand interaction in detail.
    Matched MeSH terms: Microbial Sensitivity Tests
  19. Awaad AS, Alafeefy AM, Alasmary FAS, El-Meligy RM, Zain ME, Alqasoumi SI
    Saudi Pharm J, 2017 Nov;25(7):967-971.
    PMID: 29158702 DOI: 10.1016/j.jsps.2017.02.012
    A novel and safe essential amino acid (Leucine) incorporating sulfanilamide was synthesized, and evaluated for its anti-ulcerogenic activity and in vitro anti-Helicobacter pylori activity. The new molecule showed a dose dependent activity against absolute ethanol-induced ulcer in rats, it produced percent protection of control ulcer by 66.7 at dose 100 mg/kg. In addition it showed a potent anti-Helicobacter pylori activity in vitro against 7 clinically isolated strains. The minimum inhibitory concentration (MIC) ranged from 12.5 to 50 μg/ml. The preliminary safety studies and toxicity profile are optimistic and encouraging.
    Matched MeSH terms: Microbial Sensitivity Tests
  20. F.M.I. Natrah, Z. Muta Harah, N.M.S Izzatul, A. Syahidah, B. Japar Sidik
    Sains Malaysiana, 2015;44:1269-1273.
    Eight seaweed species in Teluk Kemang and three seagrass species in Teluk Pelanduk, Port Dickson, respectively, were screened for antibacterial activities. The antibacterial activities were screened using disc diffusion test, minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) against six aquacultural pathogens strains Aeromonas hydrophila ATCC35654, Vibrio harveyi BB120, Vibrio harveyi ATCC14126, Vibrio alginolyticus ATCC17749, Vibrio parahaemolyticus ATCC17803 and Vibrio anguillarum ATCC43313. The results showed that among all the pathogens, seaweed Padina minor and seagrass Thalassia hemprichii had the strongest antibacterial activity against Vibrio harveyi BB120 and Vibrio harveyi ATCC14126, respectively. The lowest values for minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were obtained from Padina minor against V. harveyi BB120 and Thalassia hemprichii against V. harveyi ATCC14126, respectively. The findings suggested that seaweed and seagrass in Port Dickson coastal water have the potential to prevent bacterial diseases particularly in aquaculture.
    Matched MeSH terms: Microbial Sensitivity Tests
Filters
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links