METHODS: Standard methods were used for analyzing the antimicrobial susceptibility tests. The checkerboard technique was used for the in vitro assessment of fortimicin antibiotic combinations against 51 MDR P. aeruginosa and whole genome sequencing was used to determine the resistome of PDR isolate.
RESULTS: Out of 51 MDR P. aeruginosa, the highest synergistic effect was recorded for a combination of fortimicin with β-lactam group as meropenem, ceftazidime, and aztreonam at 71%, 59% and 43%, respectively. Of note, 56.8%, 39.2%, and 37.2% of the tested MDR isolates that had synergistic effects were also resistant to meropenem, ceftazidime, and aztreonam, respectively. The highest additive effects were recorded for combining fortimicin with amikacin (69%) and cefepime (44%) against MDR P. aeruginosa. Resistome analysis of the PDR isolate reflected its association with the antibiotic resistance phenotype. It ensured the presence of a wide variety of antibiotic-resistant genes (β-lactamases, aminoglycosides modifying enzymes, and efflux pump), rendering the isolate resistant to all clinically relevant anti-pseudomonal agents.
CONCLUSION: Fortimicin in combination with classical anti-pseudomonal agents had shown promising synergistic activity against MDR P. aeruginosa. Resistome profiling of PDR P. aeruginosa enhanced the rapid identification of antibiotic resistance genes that are likely linked to the appearance of this resistant phenotype and may pave the way to tackle antimicrobial resistance issues shortly.
AIMS & OBJECTIVES: In this study, we synthesized thirteen derivatives of gallic acid and evaluated their antibacterial potential against seven multi-drug resistant bacteria, as well as cytotoxic effects against human embryonic kidney cell line in vitro. Methods: 13 compounds were successfully synthesized with moderate to good yield and evaluated. Synthesized derivatives were characterized by using nuclear magnetic resonance spectroscopy, mass spectrometry, and Fourier transformation infrared spectroscopy. Antibacterial activity was determined using microdilution while cytotoxicyt was assessed using MTT assay.
RESULTS: The results of antibacterial assay showed that seven out of thirteen compounds exhibited antibacterial effects with compound 6 and 13 being most potent against Staphylococcus aureus (MIC 56 μg/mL) and Salmonella enterica (MIC 475 μg/mL) respectively. On the other hand, most of these compounds showed lower cytotoxicity against human embryonic kidney cells (HEK 293), with IC50 values ranging from over 700 μg/mL.
CONCLUSION: Notably, compound 13 was found to be non-toxic at concentrations as high as 5000 μg/mL. These findings suggest that the present synthetic derivatives of gallic acid hold potential for further studies in the development of potent antibacterial agents.
OBJECTIVES: Here, the efficacy of graphene oxide (GO), a carbon-based nanomaterial, was tested against the biofilms and intracellular S. aureus invitro. Following that, the mechanism for the intracellular antimicrobial activities and GO toxicities was elucidated.
METHODS: GO antibiofilm properties were evaluated based on the disruption of biofilm structure, and the intracellular antimicrobial activities were determined by the survival of S. aureus in infected bovine mammary cells following GO exposure. The mechanism for GO intracellular antimicrobial activities was investigated using endocytosis inhibitors. GO toxicity towards the host cells was assessed using a resazurin assay.
RESULTS: At 100 ug/mL, GO reduced between 30 and 70% of S. aureus biofilm mass, suggesting GO's ability to disrupt the biofilm structure. At 200 ug/mL, GO killed almost 80% of intracellular S. aureus, and the antimicrobial activities were inhibited when cells were pre-treated with cytochalasin D, suggesting GO intracellular antimicrobial activities were dependent on the actin-polymerization of the cell membrane. At
MATERIALS AND METHODS: The broth microdilution technique was used to individually determine the MIC of both oils and an oil mixture (in the ratio of 1:1) in a 96-well microtiter plate. As for the MBC, the subcultured method was used. The fractional inhibitory concentration index (ΣFIC) was determined to identify the interaction types between both oils. The oil mixture at its MIC was then tested on its antibiofilm and antiadherence effect.
RESULTS: The MIC of the oil mixture against the tested microbiota was 50-100%. The oil mixture was bactericidal at 100% concentration for all the mentioned microbes except S. mutans. The ΣFIC value was 2 to 4, indicating that the VCO and VOO acted additively against the microbiota. Meanwhile, the oil mixture at MIC (50% for S. sanguinis and L. casei; 100% for S. mutans and mixture species) exhibited antiadherence and antibiofilm activity toward the microbiota in mixture species.
CONCLUSION: The oil mixture possesses antibacterial, antibiofilm, and antiadherence properties toward the tested microbiota, mainly at 50-100% concentration of oil mixture. There was no synergistic interaction found between VCO and VOO.
CLINICAL SIGNIFICANCE: Children and individuals with special care may benefit from using the oil mixture, primarily to regulate the biofilm formation and colonization of the bacteria. Furthermore, the oil mixture is natural and nontoxic compared to chemical-based oral healthcare products. How to cite this article: Ng YM, Sockalingam SNMP, Shafiei Z, et al. Biological Activities of Virgin Coconut and Virgin Olive Oil Mixture against Oral Primary Colonizers: An In Vitro Study. J Contemp Dent Pract 2024;25(3):260-266.
METHODS: Positive blood cultures from hospitalized patients in a Malaysian tertiary center between April 2022 and March 2023 were reviewed. A total of 137 clinical isolates of Escherichia coli (E.coli), Klebsiella pneumoniae (K.pneumoniae), and Klebsiella oxytoca were included. The antibiotic susceptibility and ESBL phenotypes were determined by disk diffusion method and the identification of genotypes by multiplex polymerase chain reaction. The clinical characteristics and outcome information were extracted by reviewing patients' medical records to evaluate the clinical significance of the ESBL genotype-positive but phenotype-negative isolates in bacteremia.
RESULTS: All 137 isolates were positive for at least one genotype (bla CTX-M, n = 71, 51.8%; bla SHV, n = 87, 63.5%; bla TEM, n = 95, 69.3%; bla OXA-1, n = 38, 27.7%). While bla CTX-M was proportionately higher in the ESBL phenotype-positive isolates than ESBL phenotype-negative isolates (33/37, 89.2% vs 38/100, 38%; p < 0.001), more than half of those harboring bla CTX-M remained susceptible to third-generation cephalosporins (3GC). The sensitivity (Sen) of bla CTX-M for ESBL phenotypes prediction was 89.19% (95% confidence interval [CI], 74.58 - 96.97%); however, specificity (Sp) was low (46.47%; 95% CI 39.75 - 53.32). The patient characteristics were similar among 98 ESBL phenotype-negative cases, except that the non-bla CTX-M carrier group had significantly more renal impairment (0/37 vs 7/61, p = 0.043) and gastrointestinal sources of bacteremia (9/37 vs 27/61, p = 0.047). No differences were observed in infection severity, in-hospital mortality, and length of stay (LOS) between the bla CTX-M and non-bla CTX-M carrier groups.
CONCLUSION: The current study provides insight into the gene carriage in E.coli and Klebsiella species clinical isolates, including bla CTX-M genotypes in antibiotic-susceptible strains from a Malaysian hospital. The ESBL encoding genotypes such as bla CTX-M presented substantially beyond one-third of the ESBL phenotype-negative or 3GC susceptible E.coli and K.pneumoniae isolated from bloodstream infection. Although clinical outcomes were not worsened with bla CTX-M genotype-positive but ESBL phenotype-negative isolates in bacteremia, the potential implications for AMR spread deserve further investigation.
METHODS: ZnO NPs were prepared by co-precipitation method, and their anti-biofilm and antibacterial activities alone or combined with four types of broad-spectrum antibacterial (Norfloxacin, Colistin, Doxycycline, and Ampicillin) were evaluated against E. coli and S. aureus bacterial strains. Finally, the cytotoxicity and the hemolytic activity were evaluated.
RESULTS: ZnO NPs were prepared, and results showed that their size was around 10 nm with a spherical shape and a zeta potential of -21.9. In addition, ZnO NPs were found to have a strong antibacterial effect against Gram-positive and Gram-negative microorganisms, with a minimum inhibitory concentration (MIC) of 62.5 and 125 μg/mL, respectively. Additionally, they could eradicate biofilmforming microorganisms at a concentration of 125 μg/m. ZnO NPs were found to be non-toxic to erythrocyte cells. Still, some toxicity was observed for Vero cells at effective concentration ranges needed to inhibit bacterial growth and eradicate biofilm-forming organisms. When combined with different antibacterial, ZnO NP demonstrated synergistic and additive effects with colistin, and the MIC and MBEC of the combination decreased significantly to 0.976 μg/mL against planktonic and biofilm strains of MDR Gram-positive bacteria, resulting in significantly reduced toxicity.
CONCLUSION: The findings of this study encourage the development of alternative therapies with high efficacy and low toxicity. ZnO nanoparticles have demonstrated promising results in overcoming multi-drug resistant bacteria and biofilms, and their combination with colistin has shown a significant reduction in toxicity. Further studies are needed to investigate the potential of ZnO nanoparticles as a viable alternative to conventional antibiotics.