Displaying publications 1 - 20 of 723 in total

Abstract:
Sort:
  1. Zhang Y, Liu X, Yusoff M, Razali MH
    Scanning, 2021;2021:3839235.
    PMID: 34630820 DOI: 10.1155/2021/3839235
    Flower-like titanium dioxide (TiO2) nanostructures are successfully synthesized using a hybrid sol-gel and a simple hydrothermal method. The sample was characterized using various techniques to study their physicochemical properties and was tested as a photocatalyst for methyl orange degradation and as an antibacterial material. Raman spectrum and X-ray diffraction (XRD) pattern show that the phase structure of the synthesized TiO2 is anatase with 80-100 nm in diameter and 150-200 nm in length of flower-like nanostructures as proved by field emission scanning electron microscope (FESEM). The energy-dispersive X-ray spectroscopy (EDS) analysis of flower-like anatase TiO2 nanostructure found that only titanium and oxygen elements are present in the sample. The anatase phase was confirmed further by a high-resolution transmission electron microscope (HRTEM) and selected area electron diffraction (SAED) pattern analysis. The Brunauer-Emmett-Teller (BET) result shows that the sample had a large surface area (108.24 m2/g) and large band gap energy (3.26 eV) due to their nanosize. X-ray photoelectron spectroscopy (XPS) analysis revealed the formation of Ti4+ and Ti3+ species which could prevent the recombination of the photogenerated electron, thus increased the electron transportation and photocatalytic activity of flower-like anatase TiO2 nanostructure to degrade the methyl orange (83.03%) in a short time (60 minutes). These properties also support the good performance of flower-like titanium dioxide (TiO2) nanostructure as an antibacterial material which is comparable with penicillin which is 13.00 ± 0.02 mm inhibition zone against Staphylococcus aureus.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology
  2. Ali SE, Mahana O, Mohan CV, Delamare-Deboutteville J, Elgendy MY
    J Fish Dis, 2022 Dec;45(12):1857-1871.
    PMID: 36057979 DOI: 10.1111/jfd.13710
    In recent years, Egyptian tilapia aquaculture has experienced mortality episodes during the summer months. The causative agents responsible for such mortalities have not been clearly identified. A total of 400 fish specimens were collected from affected tilapia farms within five Egyptian governorates. A total of 344 bacterial isolates were identified from the examined fish specimens. Bacterial isolates were grouped into seven genera based on API 20E results. The most prevalent pathogens were Aeromonas spp. (42%), Vibrio spp. (21%), and Streptococcus agalactiae (14.5%). Other emerging infections like, Plesiomonas shigelloides (10%), Staphyloccocus spp. (8%), Pseudomonas oryzihabitans, and Acinetobacter lwoffii (2.3%) were also detected. Sequence analysis of the 16S ribosomal RNA bacterial gene of some isolates, confirmed the phenotypic identification results. The analysis of antibiotic resistance genes revealed the presence of aac(6')-Ib-cr (35.7%), blaCTX gene (23.8%), qnrS (19%), ampC (16.7%), floR (14.3%), sul1, tetA, and van.C1 (2.4%) genes in some isolates. The antimicrobia resistance gene, qac was reported in 46% of screened isolates. Bacterial strains showed variable virulence genes profiles. Aeromonas spp. harboured (act, gcat, aerA, lip, fla, and ser) genes. All Vibrio spp. possessed the hlyA gene, while cylE, hylB, and lmb genes, were detected in S. agalactiae strains. Our findings point to the possible role of the identified bacterial pathogens in tilapia summer mortality syndrome and highlight the risk of the irresponsible use of antibiotics on antimicrobial resistance in aquaculture.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology
  3. Samrot AV, Abubakar Mohamed A, Faradjeva E, Si Jie L, Hooi Sze C, Arif A, et al.
    Medicina (Kaunas), 2021 Aug 18;57(8).
    PMID: 34441045 DOI: 10.3390/medicina57080839
    Biofilms comprising aggregates of microorganisms or multicellular communities have been a major issue as they cause resistance against antimicrobial agents and biofouling. To date, numerous biofilm-forming microorganisms have been identified, which have been shown to result in major effects including biofouling and biofilm-related infections. Quorum sensing (which describes the cell communication within biofilms) plays a vital role in the regulation of biofilm formation and its virulence. As such, elucidating the various mechanisms responsible for biofilm resistance (including quorum sensing) will assist in developing strategies to inhibit and control the formation of biofilms in nature. Employing biological control measures (such as the use of bioactive compounds) in targeting biofilms is of great interest since they naturally possess antimicrobial activity among other favorable attributes and can also possibly act as potent antibiofilm agents. As an effort to re-establish the current notion and understanding of biofilms, the present review discuss the stages involved in biofilm formation, the factors contributing to its development, the effects of biofilms in various industries, and the use of various bioactive compounds and their strategies in biofilm inhibition.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology
  4. Porter GC, Safii SH, Medlicott NJ, Duncan WJ, Tompkins GR, Coates DE
    Planta Med, 2021 Mar;87(3):253-266.
    PMID: 33434939 DOI: 10.1055/a-1330-8765
    Manuka oil, an essential oil derived from the Leptospermum scoparium, has been traditionally used for wound care and as a topical antibacterial, antifungal, and anti-inflammatory. However, the essential oil is not well retained at mucosal sites, such as the oral cavity, where the benefits of the aforementioned properties could be utilized toward the treatment of persistent biofilms. Within this study, L. scoparium essential oil was incorporated into a semisolid emulsion for improved delivery. The safety profile of L. scoparium essential oil on human gingival fibroblasts was determined via cell viability, cytotoxicity, and caspase activation. The minimal bactericidal concentration of L. scoparium essential oil was determined, and the emulsion's antibiofilm effects visualized using confocal laser scanning microscopy. L. scoparium essential oil demonstrated a lower IC50 (0.02% at 48 h) when compared to the clinical control chlorhexidine (0.002% at 48 h) and displayed lower cumulative cytotoxicity. Higher concentrations of L. scoparium essential oil (≥ 0.1%) at 6 h resulted in higher caspase 3/7 activation, suggesting an apoptotic pathway of cell death. A minimal bactericidal concentration of 0.1% w/w was observed for 6 oral bacteria and 0.01% w/v for Porphyromonas gingivalis. Textural and rheometric analysis indicated increased stability of emulsion with a 1 : 3 ratio of L. scoparium essential oil: Oryza sativa carrier oil. The optimized 5% w/w L. scoparium essential oil emulsion showed increased bactericidal penetrative effects on Streptococci gordonii biofilms compared to oil alone and to chlorhexidine controls. This study has demonstrated the safety, formulation, and antimicrobial activity of L. scoparium essential oil emulsion for potential antibacterial applications at mucosal sites.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology
  5. Jeevajothi Nathan J, Mohd Taib N, Mohd Desa MN, Masri SN, Md Yasin R, Jamal F, et al.
    Med J Malaysia, 2013 Apr;68(2):119-24.
    PMID: 23629556 MyJurnal
    The in vitro activities of 6 antimicrobial agents against clinical isolates of Streptococcus pneumoniae (pneumococci) were investigated and the erythromycin minimum inhibitory concentrations (MICs) were correlated with the two major macrolide resistance determinants, mef(A) and erm(B). MICs of commonly used antibiotics as well as the presence of macrolide resistance determinant genes in all isolates were tested. Seventy one pneumococcal isolates collected at Institute for Medical Research (IMR) were included in this study. Phenotypic characterization, MIC determination using E-test strips and polymerase chain reactions for antibiotic resistance determination were included. Among the isolates, 25 (35.2%) isolates were erythromycin susceptible, 3 (4.2%) were intermediate and 42 (60.6%) were resistant. Fifty three isolates (74.7%) were found with mef(A) alone, 15 (21.1%) isolates with erm(B) + mef(A) combination and 3 (4.2%) isolates with none of the two genes. The in vitro activity of penicillin, amoxicillin clavulanic acid, ceftriaxone and cefotaxime is superior to trimethoprim-sulfamethoxazole and erythromycin. In conclusion, pneumococcal isolates in this study were highly susceptible to penicillin with very low MICs. However, a very high prevalence rate of erythromycin resistance was observed. Erythromycin resistant S. pneumoniae isolates with both mef(A) and erm(B) showed very high MICs ≥256 μg/mL.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology
  6. Puthucheary SD, Chen ST, Dugdale AE
    Med J Malaya, 1972 Jun;26(4):262-5.
    PMID: 5069415
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology*
  7. Wernli D, Jørgensen PS, Parmley EJ, Troell M, Majowicz S, Harbarth S, et al.
    Lancet Infect Dis, 2020 12;20(12):e307-e311.
    PMID: 32853549 DOI: 10.1016/S1473-3099(20)30392-3
    Improving evidence for action is crucial to tackle antimicrobial resistance. The number of interventions for antimicrobial resistance is increasing but current research has major limitations in terms of efforts, methods, scope, quality, and reporting. Moving the agenda forwards requires an improved understanding of the diversity of interventions, their feasibility and cost-benefit, the implementation factors that shape and underpin their effectiveness, and the ways in which individual interventions might interact synergistically or antagonistically to influence actions against antimicrobial resistance in different contexts. Within the efforts to strengthen the global governance of antimicrobial resistance, we advocate for the creation of an international One Health platform for online learning. The platform will synthesise the evidence for actions on antimicrobial resistance into a fully accessible database; generate new scientific insights into the design, implementation, evaluation, and reporting of the broad range of interventions relevant to addressing antimicrobial resistance; and ultimately contribute to the goal of building societal resilience to this central challenge of the 21st century.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology*
  8. Pachaiappan R, Rajendran S, Show PL, Manavalan K, Naushad M
    Chemosphere, 2021 Jun;272:128607.
    PMID: 33097236 DOI: 10.1016/j.chemosphere.2020.128607
    Many microbial species causing infectious disease all over the world became a social burden and creating threat among community. These microbes possess long lifetime, enhancing mortality and morbidity rate in affected organisms. In this condition, the treatment was ineffective and more chances of spreading of infection into other organisms. Hence, it is necessary to initiate infection control efforts and prevention activities against multidrug resistant microbes, to reduce the death rate of people. Seriously concerning towards this problem progress was shown in developing significant drugs with least side effects. Emergence of nanoparticles and its novelty showed effective role in targeting and destructing microbes well. Further, many research works have shown nanocomposites developed from nanoparticles coupled with other nanoparticles, polymers, carbon material acted as an exotic substance against microbes causing severe loss. However, metal and metal oxide nanocomposites have gained interest due to its small size and enhancing the surface contact with bacteria, producing damage to it. The bactericidal mechanism of metal and metal oxide nanocomposites involve in the production of reactive oxygen species which includes superoxide radical anions, hydrogen peroxide anions and hydrogen peroxide which interact with the cell wall of bacteria causing damage to the cell membrane in turn inhibiting the further growth of cell with leakage of internal cellular components, leading to death of bacteria. This review provides the detailed view on antibacterial activity of metal and metal oxide nanocomposite which possessed novelty due to its physiochemical changes.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology
  9. Al-Maqtari QA, Al-Ansi W, Mahdi AA, Al-Gheethi AAS, Mushtaq BS, Al-Adeeb A, et al.
    Environ Sci Pollut Res Int, 2021 May;28(20):25479-25492.
    PMID: 33462691 DOI: 10.1007/s11356-021-12346-6
    Artemisia arborescens, Artemisia abyssinica, Pulicaria jaubertii, and Pulicaria petiolaris are fragrant herbs traditionally used in medication and as a food seasoning. To date, there are no studies on the use of supercritical fluids extraction with carbon dioxide (SFE-CO2) on these plants. This study evaluates and compares total phenolic content (TPC), antioxidant activity by DPPH• and ABTS•+, antibacterial, and anti-biofilm activities of SFE-CO2 extracts. Extraction was done by SFE-CO2 with 10% ethanol as a co-solvent. A. abyssinica extract had the highest extraction yield (8.9% ± 0.41). The GC/MS analysis of volatile compounds identified 307, 265, 213, and 201compounds in A. abyssinica, A. arborescens, P. jaubertii, and P. petiolaris, respectively. The P. jaubertii extract had the highest TPC (662.46 ± 50.93 mg gallic acid equivalent/g dry extract), antioxidant activity (58.98% ± 0.20), and antioxidant capacity (71.78 ± 1.84 mg Trolox equivalent/g dry extract). The A. abyssinica and P. jaubertii extracts had significantly higher antimicrobial activity and were more effective against Gram-positive bacteria. B. subtilis was the most sensitive bacterium. P. aeruginosa was the most resistant bacterium. P. jaubertii extract had the optimum MIC and MBC (0.4 mg/ml) against B. subtilis. All SFE-CO2 extracts were effective as an anti-biofilm formation for all tested bacteria at 1/2 MIC. Meanwhile, P. jaubertii and P. petiolaris extracts were effective anti-biofilm for most tested bacteria at 1/16 MIC. Overall, the results indicated that the SFE-CO2 extracts of these plants are good sources of TPC, antioxidants, and antibacterial, and they have promising applications in the industrial fields.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology
  10. Sivaranjan K, Santhanalakshmi J, Panneer DS, Vivekananthan S, Sagadevan S, Johan MRB, et al.
    J Nanosci Nanotechnol, 2020 02 01;20(2):918-923.
    PMID: 31383087 DOI: 10.1166/jnn.2020.16895
    Herein, we report the facile synthesis of Iron oxide@Pt core-shell nanoparticles (NPs) by facile two step synthesis process. The first step follows the growth of iron oxide nanoparticle by thermal decomposition process while the second step deals with the formation of iron oxide@Pt core-shell nanoparticles by the chemical reduction method. The synthesized core-shell nanoparticles were characterized by several techniques and used for the catalytic reductive translation of Cr(VI) to Cr(III) in the presence of formic acid by a UV-vis spectrophotometer. The UV photo-spectrometer analysis confirmed the conversion efficiency from 12% to as high as 98.8% at the end of 30 minutes. Thus, the presence of Iron oxide @Pt core-shell nanoparticles (NPs) can be effectively used as a catalyst for the reducion of Cr(VI) to Cr(III) ions. Additionally, antibacterial studies were performed for the prepared core-shell nanoparticles against two bacterial strains, i.e., gram (+ve) Staphylococcus Aureus (S. Aureus) and gram (-ve) Escherichia Coli (E. Coli).
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology
  11. Teo BSX, Gan RY, Abdul Aziz S, Sirirak T, Mohd Asmani MF, Yusuf E
    J Cosmet Dermatol, 2021 Mar;20(3):993-1001.
    PMID: 32659861 DOI: 10.1111/jocd.13624
    BACKGROUND: Eucheuma Cottonii is a type of red algae obtained from Sabah with main active component, sulfated polysaccharide or k-carrageenan.

    AIMS: The objective of this research was to evaluate the antioxidant, antibacterial and potential wound-healing properties in aqueous extraction of E cottonii in order to meet the increasing demand for halal and natural cosmeceutical products.

    METHODS AND RESULTS: Aqueous extract of E cottonii was investigated for active compounds by phytochemical screening and IR spectroscopy. Antioxidant activity was carried out using DPPH method, and the IC50 value was 1.99 mg/mL. Antibacterial activity was examined against Staphylococcus Aureus using Kirby-Bauer disk diffusion method and showed 10.03 ± 0.06 mm zone of inhibition, achieved by 200 mg/mL of extracts. A wound was made by skin excision of area around 100 mm2 on each mouse. Test group was treated with aqueous extract gel (10% w/w); meanwhile, the mice that were treated with honey acted as the positive control group and the untreated mice as negative control group. Results showed that the wound contraction rate inclined to aqueous extracts as compared to untreated group (P 

    Matched MeSH terms: Anti-Bacterial Agents/pharmacology
  12. Ten KE, Md Zoqratt MZH, Ayub Q, Tan HS
    BMC Res Notes, 2021 Mar 04;14(1):83.
    PMID: 33663564 DOI: 10.1186/s13104-021-05493-z
    OBJECTIVE: The nosocomial pathogen, Acinetobacter baumannii, has acquired clinical significance due to its ability to persist in hospital settings and survive antibiotic treatment, which eventually resulted in the rapid spread of this bacterium with antimicrobial resistance (AMR) phenotypes. This study used a multidrug-resistant A. baumannii (strain ATCC BAA1605) as a model to study the genomic features of this pathogen.

    RESULTS: One circular chromosome and one circular plasmid were discovered in the complete genome of A. baumannii ATCC BAA1605 using whole-genome sequencing. The chromosome is 4,039,171 bp long with a GC content of 39.24%. Many AMR genes, which confer resistance to major classes of antibiotics (beta-lactams, aminoglycosides, tetracycline, sulphonamides), were found on the chromosome. Two genomic islands were predicted on the chromosome, one of which (Genomic Island 1) contains a cluster of AMR genes and mobile elements, suggesting the possibility of horizontal gene transfer. A subtype I-F CRISPR-Cas system was also identified on the chromosome of A. baumannii ATCC BAA1605. This study provides valuable genome data that can be used as a reference for future studies on A. baumannii. The genome of A. baumannii ATCC BAA1605 has been deposited at GenBank under accession no. CP058625 and CP058626.

    Matched MeSH terms: Anti-Bacterial Agents/pharmacology
  13. Léger A, Lambraki I, Graells T, Cousins M, Henriksson PJG, Harbarth S, et al.
    J Antimicrob Chemother, 2021 01 01;76(1):1-21.
    PMID: 33057678 DOI: 10.1093/jac/dkaa394
    The global threat of antimicrobial resistance (AMR) requires coordinated actions by and across different sectors. Increasing attention at the global and national levels has led to different strategies to tackle the challenge. The diversity of possible actions to address AMR is currently not well understood from a One Health perspective. AMR-Intervene, an interdisciplinary social-ecological framework, describes interventions to tackle AMR in terms of six components: (i) core information about the publication; (ii) social system; (iii) bio-ecological system; (iv) triggers and goals; (v) implementation and governance; and (vi) assessment. AMR-Intervene provides a broadly applicable framework, which can inform the design, implementation, assessment and reporting of interventions to tackle AMR and, in turn, enable faster uptake of successful interventions to build societal resilience to AMR.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology
  14. Lee WH, Rohanizadeh R, Loo CY
    Colloids Surf B Biointerfaces, 2021 Oct;206:111938.
    PMID: 34198233 DOI: 10.1016/j.colsurfb.2021.111938
    This study developed a novel bioactive bone substitute (hydroxyapatite, HA) with improved anti-biofilm activity by functionalizing with curcumin (anti-biofilm compound) which provide sufficient flux of curcumin concentration for 14 days. The released curcumin acts to inhibit biofilm formation and control the number of viable planktonic cells simultaneously. To prepare curcumin-functionalized HA, different concentrations of curcumin (up to 3% w/v) were added simultaneously during the precipitation process of HA. The highest loading (50 mg/g HA) of curcumin onto HA was achieved with 2% w/v of curcumin. Physicochemical characterizations of curcumin-functionalized HA composites revealed that curcumin was successfully incorporated onto HA. Curcumin was sustainably released over 14 days, while higher curcumin release was observed in acidic condition (pH 4.4) compared to physiological (pH 7.4). The cytotoxicity assays revealed that no significant difference on bone cells growth on curcumin-functionalized HA and non-functionalized HA. Curcumin-functionalized HA was effective to inhibit bacterial cell attachment and subsequent biofilm maturation stages. The anti-biofilm effect was stronger against Staphylococcus aureus compared to Pseudomonas aeruginosa. The curcumin-functionalized HA composite significantly delayed the maturation of S. aureus compared to non-functionalized HA in which microcolonies of cells only begin to appear at 96 h. Up to 3.0 log reduction in colony forming unit (CFU)/mL of planktonic cells was noted at 24 h of incubation for both microorganisms. Thus, in this study we have suggested that curcumin loaded HA could be an alternative antimicrobial agent to control the risk of infections in post-surgical implants.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology
  15. Yong YK, Wen NCM, Yeo GEC, Chew ZX, Chan LL, Md Zain NZ, et al.
    PMID: 34574752 DOI: 10.3390/ijerph18189828
    Several bacterial species cause post-operative infections, which has been a critical health concern among hospital patients. Our study in this direction is a much-needed exploratory study that was carried out at the National Heart Institute (IJN) of Malaysia to examine the virulence properties of causative bacteria obtained from postoperative patients. The bacterial isolates and data were provided by the IJN. Antibiotic resistance gene patterns, and the ability to form biofilm were investigated for 127 isolates. Klebsiella pneumoniae (36.2%) was the most common isolate collected, which was followed by Pseudomonas aeruginosa (26%), Staphylococcus aureus (23.6%), Streptococcus spp. (8.7%) and Acinetobacter baumannii (5.5%). There were 49 isolates that showed the presence of multidrug resistance genes. The mecA gene was surprisingly found in methicillin-susceptible S. aureus (MSSA), which also carried the ermA gene from those erythromycin-susceptible strains. The phenotypic antibiotic resistance profiles varied greatly between isolates. Findings from the biofilm assay revealed that 44 of the 127 isolates demonstrated the ability to produce biofilms. Our findings provide insights into the possibility of some of these bacteria surviving under antibiotic stress, and some antibiotic resistance genes being silenced.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology
  16. Taufiq A, Yuliantika D, Sunaryono S, Saputro RE, Hidayat N, Mufti N, et al.
    An Acad Bras Cienc, 2021;93(4):e20200774.
    PMID: 34705939 DOI: 10.1590/0001-3765202120200774
    This study performs natural sand-based synthesis using the sonochemical route for preparing Zn-doped magnetite nanoparticles. The nanoparticles were dispersed in water as a carrier liquid to form Zn-doped magnetite aqueous ferrofluids. Structural data analysis indicated that the Zn-doped magnetite nanoparticles formed a nanosized spinel structure. With an increase in the Zn content, the lattice parameters of the Zn-doped magnetite nanoparticles tended to increase because Zn2+ has a larger ionic radius than those of Fe3+ and Fe2+. The existence of Zn-O and Fe-O functional groups in tetrahedral and octahedral sites were observed in the wavenumber range of 400-700 cm-1. The primary particles of the Zn-doped magnetite ferrofluids tended to construct chain-like structures with fractal dimensions of 1.2-1.9. The gas-like compression (GMC) plays as a better model than the Langevin theory to fit the saturation magnetization of the ferrofluids. The ferrofluids exhibited a superparamagnetic character, with their magnetization was contributed by aggregation. The Zn-doped magnetite ferrofluids exhibited excellent antibacterial activity against gram-positive and negative bacteria. It is suggested that the presence of the negatively charged surface and the nanoparticle size may contribute to the high antibacterial activity of Zn-doped magnetite ferrofluids and making them potentially suitable for advanced biomedical.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology
  17. Jawan R, Abbasiliasi S, Mustafa S, Kapri MR, Halim M, Ariff AB
    Probiotics Antimicrob Proteins, 2021 04;13(2):422-440.
    PMID: 32728855 DOI: 10.1007/s12602-020-09690-3
    Determination of a microbial strain for the joining into sustenance items requires both in vitro and in vivo assessment. A newly isolated bacteriocin-like inhibitory substance (BLIS) producing lactic acid bacterium, Lactococcus lactis Gh1, was isolated from a traditional flavour enhancer and evaluated in vitro for its potential applications in the food industry. Results from this study showed that L. lactis was tolerant to NaCl (≤ 4.0%, w/v), phenol (≤ 0.4%, w/v), 0.3% (w/v) bile salt, and pH 3. BLIS from L. lactis showed antimicrobial activity against Listeria monocytogenes ATCC 15313 and was susceptible to 10 types of antibiotics. The absence of haemolytic activity and the presence of acid phosphatase and naphthol-AS-BI-phosphohydrolase were observed in L. lactis. L. lactis could coagulate milk and showed a negative response to amylolytic and proteolytic activities and did not secrete β-galactosidase. The antimicrobial activity of BLIS was completely abolished at 121 °C. The BLIS was conserved at 4 °C in BHI and MRS medium up to 6-4 months, respectively. BLIS activity was more stable in BHI as compared to MRS after four freeze-thaw cycles and was not affected by a wide range of pH (pH 4-8). BLIS was sensitive to proteinase k and resistant to catalase and trypsin. The antimicrobial activity was slightly reduced by acetone, ethanol, methanol, and acetonitrile at 10% (v/v) and also towards Tween-80, urea, and NaCl 1% (v/v). Results from this study have demonstrated that L. lactis has a vast potential to be applied in the food industry, such as for the preparation of starter culture, functional foods, and probiotic products.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology
  18. Todorov SD, Dioso CM, Liong MT, Nero LA, Khosravi-Darani K, Ivanova IV
    World J Microbiol Biotechnol, 2022 Nov 08;39(1):4.
    PMID: 36344843 DOI: 10.1007/s11274-022-03419-w
    Pediococci are lactic acid bacteria (LAB) which have been used for centuries in the production of traditional fermented foods. There fermentative abilities were explored by the modern food processing industry in use of pediococci as starter cultures, enabling the production of fermented foods with distinct characteristics. Furthermore, some pediococci strains can produce bacteriocins and other antimicrobial metabolites (AMM), such as pediocins, which are increasingly being explored as bio-preservatives in various food matrices. Due to their versatility and inhibitory spectrum, pediococci bacteriocins and AMM are being extensively researched not only in the food industry, but also in veterinary and human medicine. Some of the pediococci were evaluated as potential probiotics with different beneficial areas of application associated with human and other animals' health. The main taxonomic characteristics of pediococci species are presented here, as well as and their potential roles and applications as starter cultures, as bio-preservatives and as probiotic candidates.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology
  19. Liu S, Lu SY, Qureshi N, Enshasy HAE, Skory CD
    Probiotics Antimicrob Proteins, 2022 Dec;14(6):1170-1183.
    PMID: 35995909 DOI: 10.1007/s12602-022-09976-8
    Milk kefir fermentation has been used in households for generations. Consumption of milk kefir has been associated with various health benefits, presumably from the probiotics of yeast and bacteria that make up the kefir grains. In addition, many of the microbes are known to produce novel antimicrobial compounds that can be used for other applications. The microbes living inside kefir grains differ significantly depending on geographical location and production methods. In this study, we aimed to use metagenomic analysis of fermented milk by using three different kefir grains (kefir 1, kefir 2, and kefir 3) from different US sources. We analyzed the microbial compositions of the three milk fermentation samples. This study revealed that each sample contains unique and distinct groups of microbes, kefir 1 showed the least diversity, and kefir 3 showed the highest diversity. Kefir 3 is rich in Proteobacteria while kefir 2 is dominated by the Firmicutes. Using bacterial indicator growth analyses carried out by continuous readings from microplate-based bioreactor assays suggested that kefir 2 fermentation filtrate has higher antibacterial property. We have screened 30 purified cultures of kefir 2 sample and isolated two lactic acid bacteria strains with higher antibacterial activities; the two strains were identified as Leuconostoc mesenteroides 28-1 and Lentilactobacillus kefiri 25-2 by 16S genomic PCR with confirmed antibacterial activities of fermentation filtrate after growing under both aerobic and anaerobic conditions.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology
  20. Rehman S, Madni A, Jameel QA, Usman F, Raza MR, Ahmad F, et al.
    AAPS PharmSciTech, 2022 Nov 17;23(8):304.
    PMID: 36396831 DOI: 10.1208/s12249-022-02456-w
    The current study sought to create graphene oxide-based superstructures for gastrointestinal drug delivery. Graphene oxide has a large surface area that can be used to load anti-cancer drugs via non-covalent methods such as surface adsorption and hydrogen bonding. To enhance the bio-applicability of graphene oxide, nano-hybrids were synthesized by encapsulating the graphene oxide into calcium alginate hydrogel beads through the dripping-extrusion technique. These newly developed bio-nanocomposite hybrid hydrogel beads were evaluated in structural analysis, swelling study, drug release parameters, haemolytic assay, and antibacterial activity. Doxorubicin served as a model drug. The drug entrapment efficiency was determined by UV-spectroscopy analysis and was found to be high at ⁓89% in graphene oxide hybrid hydrogel beads. These fabricated hydrogel beads ensure the drug release from a hybrid polymeric matrix in a more controlled and sustained pattern avoiding the problems associated with a non-hybrid polymeric system. The drug release study of 12 h shows about 83% release at pH 6.8. In vitro drug release kinetics proved that drug release was a Fickian mechanism. The cytotoxic effect of graphene oxide hybrid alginate beads was also determined by evaluating the morphology of bacterial cells and red blood cells after incubation. Additionally, it was determined that the sequential encapsulation of graphene oxide in alginate hydrogel beads hides its uneven edges and lessens the graphene oxide's negative impacts. Also, the antibacterial study and biocompatibility of fabricated hydrogel beads made them potential candidates for gastrointestinal delivery.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links