Displaying publications 1 - 20 of 589 in total

  1. Al-Jadi AM, Kanyan Enchang F, Mohd Yusoff K
    Turk J Med Sci, 2014;44(5):733-40.
    PMID: 25539538
    BACKGROUND/AIM: To examine, for the first time, the effect of a selected Malaysian honey and its major components on the proliferation of cultured fibroblasts.

    MATERIALS AND METHODS: Honey and some of its components, which include the sugars, the proteins, the hydrogen peroxide produced, and the phenolics, were exposed to cultured fibroblasts. The MTT colorimetric assay was used to assess cell viability and proliferation.

    RESULTS: The stimulatory effect of honey on fibroblast proliferation was observed to be time- and dose-dependent. The continuous production of hydrogen peroxide by the honey-glucose oxidase system also acts to stimulate cell proliferation in a time- and dose-dependent manner. The presence of phenolics with antioxidant properties, on the other hand, renders protection to the cells against the toxic effect of hydrogen peroxide. However, the presence of a growth factor-like substance in honey could not be ascertained.

    CONCLUSION: For the first time, honey and its major components were shown to exert stimulatory effects on cultured fibroblasts. Honey is therefore potentially useful in medicinal practices.

    Matched MeSH terms: Anti-Bacterial Agents/pharmacology
  2. Jeevajothi Nathan J, Mohd Taib N, Mohd Desa MN, Masri SN, Md Yasin R, Jamal F, et al.
    Med J Malaysia, 2013 Apr;68(2):119-24.
    PMID: 23629556 MyJurnal
    The in vitro activities of 6 antimicrobial agents against clinical isolates of Streptococcus pneumoniae (pneumococci) were investigated and the erythromycin minimum inhibitory concentrations (MICs) were correlated with the two major macrolide resistance determinants, mef(A) and erm(B). MICs of commonly used antibiotics as well as the presence of macrolide resistance determinant genes in all isolates were tested. Seventy one pneumococcal isolates collected at Institute for Medical Research (IMR) were included in this study. Phenotypic characterization, MIC determination using E-test strips and polymerase chain reactions for antibiotic resistance determination were included. Among the isolates, 25 (35.2%) isolates were erythromycin susceptible, 3 (4.2%) were intermediate and 42 (60.6%) were resistant. Fifty three isolates (74.7%) were found with mef(A) alone, 15 (21.1%) isolates with erm(B) + mef(A) combination and 3 (4.2%) isolates with none of the two genes. The in vitro activity of penicillin, amoxicillin clavulanic acid, ceftriaxone and cefotaxime is superior to trimethoprim-sulfamethoxazole and erythromycin. In conclusion, pneumococcal isolates in this study were highly susceptible to penicillin with very low MICs. However, a very high prevalence rate of erythromycin resistance was observed. Erythromycin resistant S. pneumoniae isolates with both mef(A) and erm(B) showed very high MICs ≥256 μg/mL.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology
  3. Puthucheary SD, Chen ST, Dugdale AE
    Med J Malaya, 1972 Jun;26(4):262-5.
    PMID: 5069415
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology*
  4. So AD, Shah TA, Roach S, Ling Chee Y, Nachman KE
    J Law Med Ethics, 2015;43 Suppl 3:38-45.
    PMID: 26243242 DOI: 10.1111/jlme.12273
    The growing demand for animal products and the widespread use of antibiotics in bringing food animals to market have heightened concerns over cross-species transmission of drug resistance. Both the biology and emerging epidemiology strongly support the need for global coordination in stemming the generation and propagation of resistance, and the patchwork of global and country-level regulations still leaves significant gaps. More importantly, discussing such a framework opens the door to taking modular steps towards solving these challenges - for example, beginning among targeted parties rather than all countries, tying accountability to financial and technical support, or taxing antibiotic use in animals to deter low-value usage of these drugs. An international agreement would allow integrating surveillance data collection, monitoring and enforcement, research into antibiotic alternatives and more sustainable approaches to agriculture, technical assistance and capacity building, and financing under the umbrella of a One Health approach.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology*
  5. Wong FC, Tan ST, Chai TT
    Crit Rev Food Sci Nutr, 2016 Jul 29;56 Suppl 1:S162-70.
    PMID: 26193174 DOI: 10.1080/10408398.2015.1045967
    Many phytochemicals derived from edible medicinal plants have been investigated intensively for their various bioactivities. However, the detailed mechanism and their corresponding molecular targets frequently remain elusive. In this review, we present a summary of the research works done on phytochemical-mediated molecular targets, identified via proteomic approach. Concurrently, we also highlighted some pharmaceutical drugs which could be traced back to their origins in phytochemicals. For ease of presentation, these identified protein targets were categorized into two important healthcare-related fields, namely anti-bacterial and anti-cancer research. Through this review, we hope to highlight the usefulness of comparative proteomic as a powerful tool in phytochemical-mediated protein target identifications. Likewise, we wish to inspire further investigations on some of these protein targets identified over the last few years. With contributions from all researchers, the accumulative efforts could eventually lead to the discovery of some target-specific, low-toxicity therapeutic agents.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology
  6. Ma C, Lo PK, Xu J, Li M, Jiang Z, Li G, et al.
    Bioresour Technol, 2020 Oct;314:123731.
    PMID: 32615447 DOI: 10.1016/j.biortech.2020.123731
    In this study, the differences on the physico-chemical parameters, lignocellulose degradation, dynamic succession of microbial community, gene expression of carbohydrate-active enzymes and antibiotics resistance genes were compared during composting systems of bagasse pith/pig manure (BP) and manioc waste/pig manure (MW). The results revealed that biodegradation rates of organic matter, cellulose, hemicellulose and lignin (29.14%, 17.53%,45.36% and 36.48%) in BP were higher than those (15.59%, 16.74%, 41.23% and 29.77%) in MW. In addition, the relative abundance of Bacillus, Luteimonas, Clostridium, Pseudomonas, Streptomyces and expression of genes encoding carbohydrate- active enzymes in BP were higher than those in MW based on metagenomics sequencing. During composting, antibiotics and antibiotic resistance genes were substantially reduced, but the removal efficiency was divergent in the both samples. Taken together, metagenomics analysis was a potential method for evaluating lignocellulose's biodegradation process and determining the elimination of antibiotic and antibiotic resistance genes from different composting sources of biomass.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology
  7. Angers-Loustau A, Petrillo M, Bengtsson-Palme J, Berendonk T, Blais B, Chan KG, et al.
    F1000Res, 2018;7.
    PMID: 30026930 DOI: 10.12688/f1000research.14509.2
    Next-Generation Sequencing (NGS) technologies are expected to play a crucial role in the surveillance of infectious diseases, with their unprecedented capabilities for the characterisation of genetic information underlying the virulence and antimicrobial resistance (AMR) properties of microorganisms.  In the implementation of any novel technology for regulatory purposes, important considerations such as harmonisation, validation and quality assurance need to be addressed.  NGS technologies pose unique challenges in these regards, in part due to their reliance on bioinformatics for the processing and proper interpretation of the data produced.  Well-designed benchmark resources are thus needed to evaluate, validate and ensure continued quality control over the bioinformatics component of the process.  This concept was explored as part of a workshop on "Next-generation sequencing technologies and antimicrobial resistance" held October 4-5 2017.   Challenges involved in the development of such a benchmark resource, with a specific focus on identifying the molecular determinants of AMR, were identified. For each of the challenges, sets of unsolved questions that will need to be tackled for them to be properly addressed were compiled. These take into consideration the requirement for monitoring of AMR bacteria in humans, animals, food and the environment, which is aligned with the principles of a "One Health" approach.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology*
  8. Teow SY, Wong MM, Yap HY, Peh SC, Shameli K
    Molecules, 2018 06 06;23(6).
    PMID: 29882775 DOI: 10.3390/molecules23061366
    Nanoparticles (NPs) are nano-sized particles (generally 1⁻100 nm) that can be synthesized through various methods. The wide range of physicochemical characteristics of NPs permit them to have diverse biological functions. These particles are versatile and can be adopted into various applications, particularly in biomedical field. In the past five years, NPs’ roles in biomedical applications have drawn considerable attentions, and novel NPs with improved functions and reduced toxicity are continuously increasing. Extensive studies have been carried out in evaluating antibacterial potentials of NPs. The promising antibacterial effects exhibited by NPs highlight the potential of developing them into future generation of antimicrobial agents. There are various methods to synthesize NPs, and each of the method has significant implication on the biological action of NPs. Among all synthetic methods, green technology is the least toxic biological route, which is particularly suitable for biomedical applications. This mini-review provides current update on the antibacterial effects of NPs synthesized by green technology using plants. Underlying challenges in developing NPs into future antibacterials in clinics are also discussed at the present review.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology*
  9. Moghadamtousi SZ, Kadir HA, Hassandarvish P, Tajik H, Abubakar S, Zandi K
    Biomed Res Int, 2014;2014:186864.
    PMID: 24877064 DOI: 10.1155/2014/186864
    Curcuma longa L. (Zingiberaceae family) and its polyphenolic compound curcumin have been subjected to a variety of antimicrobial investigations due to extensive traditional uses and low side effects. Antimicrobial activities for curcumin and rhizome extract of C. longa against different bacteria, viruses, fungi, and parasites have been reported. The promising results for antimicrobial activity of curcumin made it a good candidate to enhance the inhibitory effect of existing antimicrobial agents through synergism. Indeed, different investigations have been done to increase the antimicrobial activity of curcumin, including synthesis of different chemical derivatives to increase its water solubility as well ass cell up take of curcumin. This review aims to summarize previous antimicrobial studies of curcumin towards its application in the future studies as a natural antimicrobial agent.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology*
  10. Ngeow YF, Cheng HJ, Chen JW, Yin WF, Chan KG
    Sensors (Basel), 2013;13(11):15242-51.
    PMID: 24284772 DOI: 10.3390/s131115242
    Klebsiella pneumoniae is one of the most common Gram-negative bacterial pathogens in clinical practice. It is associated with a wide range of disorders, ranging from superficial skin and soft tissue infections to potentially fatal sepsis in the lungs and blood stream. Quorum sensing, or bacterial cell-cell communication, refers to population density-dependent gene expression modulation. Quorum sensing in Proteobacteria relies on the production and sensing of signaling molecules which are mostly N-acylhomoserine lactones. Here, we report the identification of a multidrug resistant clinical isolate, K. pneumoniae strain CSG20, using matrix-assisted laser desorption ionization-time-of-flight (MALDI-TOF) mass spectrometry. We further confirmed quorum sensing activity in this strain with the use of high resolution tandem liquid chromatography quadrupole mass spectrometry and provided evidence K. pneumoniae strain CSG20 produced N-hexanoyl-homoserine lactone (C6-HSL). To the best of our knowledge, this is the first report on the production of N-hexanoylhomoserine lactone (C6-HSL) in clinical isolate K. pneumoniae.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology
  11. Sivasothy Y, Ibrahim H, Paliany AS, Alias SA, Awang K
    Bioorg. Med. Chem. Lett., 2013 Dec 1;23(23):6280-5.
    PMID: 24144849 DOI: 10.1016/j.bmcl.2013.09.082
    The rhizomes of Alpinia pahangensis Ridley yielded a new bis-labdanic diterpene for which the name pahangensin A (1) was proposed along with a new labdane diterpene, pahangensin B (2). Their structures were elucidated by spectroscopic methods including, 1D and 2D NMR techniques and LCMS-IT-TOF analysis. Pahangensin A (1) was found to be an antibacterial agent against Staphylococcus aureus, Bacillus cereus and Bacillus subtilis with MIC values less than 100 μg/mL, respectively. Pahangensin B (2) exhibited antibacterial activity (MIC <100 μg/mL) against B. cereus.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology
  12. Podin Y, Sarovich DS, Price EP, Kaestli M, Mayo M, Hii K, et al.
    Antimicrob Agents Chemother, 2014;58(1):162-6.
    PMID: 24145517 DOI: 10.1128/AAC.01842-13
    Melioidosis is a potentially fatal disease caused by the saprophytic bacterium Burkholderia pseudomallei. Resistance to gentamicin is generally a hallmark of B. pseudomallei, and gentamicin is a selective agent in media used for diagnosis of melioidosis. In this study, we determined the prevalence and mechanism of gentamicin susceptibility found in B. pseudomallei isolates from Sarawak, Malaysian Borneo. We performed multilocus sequence typing and antibiotic susceptibility testing on 44 B. pseudomallei clinical isolates from melioidosis patients in Sarawak district hospitals. Whole-genome sequencing was used to identify the mechanism of gentamicin susceptibility. A novel allelic-specific PCR was designed to differentiate gentamicin-sensitive isolates from wild-type B. pseudomallei. A reversion assay was performed to confirm the involvement of this mechanism in gentamicin susceptibility. A substantial proportion (86%) of B. pseudomallei clinical isolates in Sarawak, Malaysian Borneo, were found to be susceptible to the aminoglycoside gentamicin, a rare occurrence in other regions where B. pseudomallei is endemic. Gentamicin sensitivity was restricted to genetically related strains belonging to sequence type 881 or its single-locus variant, sequence type 997. Whole-genome sequencing identified a novel nonsynonymous mutation within amrB, encoding an essential component of the AmrAB-OprA multidrug efflux pump. We confirmed the role of this mutation in conferring aminoglycoside and macrolide sensitivity by reversion of this mutation to the wild-type sequence. Our study demonstrates that alternative B. pseudomallei selective media without gentamicin are needed for accurate melioidosis laboratory diagnosis in Sarawak. This finding may also have implications for environmental sampling of other locations to test for B. pseudomallei endemicity.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology*
  13. Jafarzade M, Yahya NA, Shayesteh F, Usup G, Ahmad A
    J Microbiol, 2013 Jun;51(3):373-9.
    PMID: 23812818 DOI: 10.1007/s12275-013-2440-2
    This study was undertaken to investigate the influence of culture conditions and medium components on production of antibacterial compounds by Serratia sp. WPRA3 (JX020764) which was isolated from marine water of Port Dickson, Malaysia. Biochemical, morphological, and molecular characteristics suggested that the isolate is a new candidate of the Serratia sp. The isolate showed strong antimicrobial activity against fungi, Gram-negative and Gram-positive bacteria. This bacterium exhibited optimum antibacterial compounds production at 28°C, pH 7 and 200 rev/min aeration during 72 h of incubation period. Highest antibacterial activity was obtained when sodium chloride (2%), yeast extract (0.5%), and glucose concentration (0.75%) were used as salt, nitrogen, and carbon sources respectively. Different active fractions were obtained by Thin-Layer Chromatography (TLC) and Flash Column Chromatography (FCC) from ethyl acetate crude extracts namely OCE and RCE in different culture conditions, OCE (pH 5, 200 rev/min) and RCE (pH 7/without aeration). In conclusion, the results suggested different culture conditions have a significant impact on the types of secondary metabolites produced by the bacterium.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology*
  14. Ibrahim D, Hong LS, Kuppan N
    Nat Prod Commun, 2013 Apr;8(4):493-6.
    PMID: 23738462
    The antibacterial efficiency of the methanolic extract of Phyllanthus niruri Linn. was investigated against pathogenic bacteria responsible for common infections of skin, and urinary and gastrointestinal tracts. The extract demonstrated antibacterial activities against all the Gram-positive and Gram-negative bacteria tested. The results obtained suggested that at higher concentrations the extract would eradicate the growth of bacterial cells. The bacterial cells, after exposure to the extract, showed complete alteration in their morphology, followed by collapse of the cells beyond repair. The study revealed that the methanolic extract of P. niruri may be an effective antibacterial agent to treat bacterial infections since the extract exhibited significant antimicrobial potency, comparable with that of the standard antibiotic chloramphenicol.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology*
  15. Wiart C, Akaho E, Hannah M, Yassim M, Hamimah H, Au TS, et al.
    Am. J. Chin. Med., 2005;33(4):683-5.
    PMID: 16173541
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology*
  16. Santhana Raj L, Hing HL, Baharudin O, Teh Hamidah Z, Aida Suhana R, Nor Asiha CP, et al.
    Trop Biomed, 2007 Jun;24(1):105-9.
    PMID: 17568383 MyJurnal
    Mesosomes of Staphylococcus aureus ATCC 25923 treated with antibiotics were examined morphologically under the electron microscope. The Transmission Electron Microscope Rapid Method was used to eliminate the artifacts due to sample processing. Mesosomes were seen in all the antibiotic treated bacteria and not in the control group. The main factor that contributes to the formation of mesosomes in the bacteria was the mode of action of the antibiotics. The continuous cytoplasmic membrane with infolding (mesosomes) as in the S. aureus ATCC 25923 is therefore confirmed as a definite pattern of membrane organization in gram positive bacteria assaulted by amikacin, gentamicin, ciprofloxacin, vancomycin and oxacillin antibiotics. Our preliminary results show oxacillin and vancomycin treated bacteria seemed to have deeper and more mesosomes than those treated with amikacin, gentamicin and ciprofloxacin. Further research is needed to ascertain whether the deep invagination and the number of mesosomes formed is associated with the types of antibiotic used.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology*
  17. Mai-Ngam K, Chumningan P
    Med J Malaysia, 2004 May;59 Suppl B:137-8.
    PMID: 15468856
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology*
  18. Jamal F, Aziz AH, Shafie MS
    Med J Malaysia, 1982 Jun;37(2):128-31.
    PMID: 7132831
    Two hundred strains of Klebsiella species isolated from clinical specimens over a four-month period were biotyped as Klebsiella aerogenes (173 strains), Klebsiella ozaenae (15 strains), Klebsiella edwardsii (5 strains), Klebsiella atlantae (2 strains) and Klebsiella oxytoca (1 strain). Klebsiella aerogenes and Klebsiella ozaenae were more resistant towards antibiotics when compared with other species. Colonial morphology on eosin methylene blue agar (Oxoid) was not found useful for differentiations of Klebsiella biotypes.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology*
  19. Koh CL, Tay SH
    Singapore Med J, 1984 Oct;25(5):300-3.
    PMID: 6523137
    A clinical isolate of Proteus sp., resistant to ampicillin, carbenicillin, cephaloridine, chloramphenicol, cotrimoxazole, gentamicin,
    kanamycin and tetracycline, was examined for the presence of conjugative R plasmids. Results from conjugation, agarose gel
    electrophoresis and transformation experiments showed that it harboured a large self-transmissible R plasmid which coded for all
    the resistance traits.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology*
  20. Soon SH, Chai Kim Kai
    Med J Malaya, 1969 Dec;24(2):145-6.
    PMID: 4244140
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology*
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links