Displaying publications 1 - 20 of 24 in total

Abstract:
Sort:
  1. Gopalai AA, Lim SY, Chua JY, Tey S, Lim TT, Mohamed Ibrahim N, et al.
    Biomed Res Int, 2014;2014:867321.
    PMID: 25243190 DOI: 10.1155/2014/867321
    The LRRK2 gene has been associated with both familial and sporadic forms of Parkinson's disease (PD). The G2019S variant is commonly found in North African Arab and Caucasian PD patients, but this locus is monomorphic in Asians. The G2385R and R1628P variants are associated with a higher risk of developing PD in certain Asian populations but have not been studied in the Malaysian population. Therefore, we screened the G2385R and R1628P variants in 1,202 Malaysian subjects consisting of 695 cases and 507 controls. The G2385R and R1628P variants were associated with a 2.2-fold (P = 0.019) and 1.2-fold (P = 0.054) increased risk of PD, respectively. Our data concur with other reported findings in Chinese, Taiwanese, Singaporean, and Korean studies.
    Matched MeSH terms: Protein-Serine-Threonine Kinases/genetics*
  2. Ghodsian N, Ismail P, Ahmadloo S, Heidari F, Haghvirdizadeh P, Ataollahi Eshkoor S, et al.
    J Diabetes Res, 2016;2016:8219543.
    PMID: 27314050 DOI: 10.1155/2016/8219543
    With-no-lysine (K) Kinase-4 (WNK4) consisted of unique serine and threonine protein kinases, genetically associated with an autosomal dominant form of hypertension. Argumentative consequences have lately arisen on the association of specific single nucleotide polymorphisms of WNK4 gene and essential hypertension (EHT). The aim of this study was to determine the association of Ala589Ser polymorphism of WNK4 gene with essential hypertensive patients in Malaysia. WNK4 gene polymorphism was specified utilizing mutagenically separated polymerase chain reaction (PCR) and restriction fragment length polymorphism (RFLP) method in 320 subjects including 163 cases and 157 controls. Close relation between Ala589Ser polymorphism and elevated systolic and diastolic blood pressure (SBP and DBP) was recognized. Sociodemographic factors including body mass index (BMI), age, the level of fasting blood sugar (FBS), low density lipoprotein (LDL), and triglyceride (TG) in the cases and healthy subjects exhibited strong differences (p < 0.05). The distribution of allele frequency and genotype of WNK4 gene Ala589Ser polymorphism showed significant differences (p < 0.05) between EHT subjects with or without type 2 diabetes mellitus (T2DM) and normotensive subjects, statistically. The WNK4 gene variation influences significantly blood pressure increase. Ala589Ser probably has effects on the enzymic activity leading to enhanced predisposition to the disorder.
    Matched MeSH terms: Protein-Serine-Threonine Kinases/genetics*
  3. Thirthagiri E, Cheong LS, Yip CH, Teo SH
    Fam Cancer, 2009;8(4):355-8.
    PMID: 19399639 DOI: 10.1007/s10689-009-9244-x
    A truncating mutation (1100delC) in the cell cycle checkpoint kinase-2 gene, CHEK2, has been identified as a risk factor for familial and sporadic breast cancer in some Northern and Western European populations. However, the prevalence of CHEK2*1100delC in breast cancer appears to be population dependent. We analysed the prevalence of CHEK2*1100delC in 668 breast cancer cases, of which 542 were invasive breast cancers, from a hospital-based cohort of breast cancer patients from Kuala Lumpur, Malaysia. The variant was not found in any patients in this cohort, suggesting that CHEK2*1100delC is rare in our population, and unlikely to contribute significantly to risk to breast cancer among the Malay, Chinese and Indian ethnic groups in Malaysia. This suggests that screening for this allele should not be routinely conducted in Malaysia.
    Matched MeSH terms: Protein-Serine-Threonine Kinases/genetics*
  4. Leong YQ, Koh RY, Chye SM, Ng KY
    Biol Chem, 2023 May 25;404(6):551-567.
    PMID: 36634094 DOI: 10.1515/hsz-2022-0228
    Increase evidence from epidemiological studies have shown an inverse association between Parkinson's disease (PD) and lung cancer. PD and lung cancer are both geriatric diseases, where these two diseases are sharing some common genetic determinants. Several PD-associated genes including alpha synuclein (SNCA), PTEN-induced kinase 1 (PINK1), parkin, parkinsonism associated deglycase (DJ-1), leucine-rich repeat kinase 2 (LRRK2), F-box protein 7 (FBXO7) and ubiquitin C-terminal hydrolase L1 (UCHL1) were reported to have altered expressions in lung cancer patients. This indicates that certain PD-associated genes might be important in conferring anticancer effects. This review aims to depict the physiological functions of these genes, and discuss the putative roles of these PD-associated genes in lung cancer. The understanding of the roles of these genes in the lung cancer progression might be important in the identification of new treatment targets for lung cancer. Gene therapy that aims to alter the expressions of these genes could be developed for future anticancer therapy. As a result, studying the roles of these genes in lung cancer may also help to understand their involvements as well as their roles in the pathogenesis of PD.
    Matched MeSH terms: Protein-Serine-Threonine Kinases/genetics
  5. Kwa SK, Gupta ED
    Aust Fam Physician, 2013 Jul;42(7):490-1.
    PMID: 23826603
    An overweight woman, aged 58 years, presented for follow up of hypertension, diabetes and dyslipidaemia. She was noted to have hyperpigmented brown macules on the inner surface of the lower lip and buccal mucosa (Figure 1). She stated that she had first noticed these lesions when aged in her 40s. Her mother died at age 58 years from gastric cancer with extensive metastases, and her brother died at age 45 years from colon cancer with spread to the liver and lungs.
    Matched MeSH terms: Protein-Serine-Threonine Kinases/genetics
  6. Moriya S, Tan VP, Yee AK, Parhar IS
    Neurosci Lett, 2019 08 24;708:134330.
    PMID: 31201839 DOI: 10.1016/j.neulet.2019.134330
    In Parkinson's disease (PD), several genes have been identified as the PD-related genes, however, the regulatory mechanisms of these gene expressions have not been fully identified. In this study, we investigated the effect of inflammation, one of the major risk factors in PD on expressions of the PD-related genes. Lipopolysaccharide (LPS) was intraperitoneally administered to mature male zebrafish and gene expressions in the brains were examined by real-time PCR. In the inflammation-related genes, expressions of tnfb, il1b and il6 were increased at 2 days post administration in the 10 μg group, and tnfb expression was also increased at 4 days post administration in the 1 μg and 10 μg group. In the PD-related genes, pink1 expression was significantly decreased at 4 days, atp13a2 expression was significantly increased at 7 days, and uchl1 expression was significantly decreased at 7 days. This suggests that pink1, atp13a2 and uchl1 expressions are regulated by inflammation, and this regulatory mechanism might be involved in the progress of PD.
    Matched MeSH terms: Protein-Serine-Threonine Kinases/genetics
  7. Ravichandran G, Pasupuleti M, Arasu MV, Al-Dhabi NA, Arshad A, Arockiaraj J
    Fish Shellfish Immunol, 2020 Nov;106:332-340.
    PMID: 32758637 DOI: 10.1016/j.fsi.2020.07.068
    The occurrences of multiple drug-resistant strains have been relentlessly increasing in recent years. The aquaculture industry has encountered major disease outbreaks and crucially affected by this situation. The usage of non-specific chemicals and antibiotics expedites the stimulation of resistant strains. Triggering the natural defense mechanism would provide an effective and safest way of protecting the host system. Hence, we have investigated the innate immune function of serine/threonine-protein kinase (STPK) in Macrobrachium rosenbergii (Mr). The in-silico protein analysis resulted in the identification of cationic antimicrobial peptide, MrSL-19, with interesting properties from STPK of M. rosenbergii. Antimicrobial assay, FACS and SEM analysis demonstrated that the peptide potentially inhibits Staphylococcus aureus by interacting with its membrane. The toxic study on MrSL-19 demonstrated that the peptide is not toxic against HEK293 cells as well as human erythrocytes. This investigation showed the significant innate immune property of an efficient cationic antimicrobial peptide, MrSL-19 of STPK from M. rosenbergii.
    Matched MeSH terms: Protein-Serine-Threonine Kinases/genetics*
  8. Gopalai AA, Lim SY, Aziz ZA, Lim SK, Tan LP, Chong YB, et al.
    Ann Acad Med Singap, 2013 May;42(5):237-40.
    PMID: 23771111
    INTRODUCTION: The G2385R and R1628P LRRK2 gene variants have been associated with an increased risk of Parkinson's disease (PD) in the Asian population. Recently, a new LRRK2 gene variant, A419V, was reported to be a third risk variant for PD in Asian patients. Our objective was to investigate this finding in our cohort of Asian subjects.

    MATERIALS AND METHODS: Eight hundred and twenty-eight subjects (404 PD patients, and 424 age and gender-matched control subjects without neurological disorders) were recruited. Genotyping was done by Taqman® allelic discrimination assay on an Applied Biosystems 7500 Fast Real-Time PCR machine.

    RESULTS: The heterozygous A419V genotype was found in only 1 patient with PD, compared to 3 in the control group (0.4% vs 1.3%), giving an odds ratio of 0.35 (95% confidence interval (CI), 0.01 to 3.79; P = 0.624).

    CONCLUSION: A419V is not an important LRRK2 risk variant in our Asian cohort of patients with PD. Our data are further supported by a literature review which showed that 4 out of 6 published studies reported a negative association of this variant in PD.

    Matched MeSH terms: Protein-Serine-Threonine Kinases/genetics*
  9. Zainal Abidin S, Tan EL, Chan SC, Jaafar A, Lee AX, Abd Hamid MH, et al.
    BMC Neurol, 2015;15:59.
    PMID: 25896831 DOI: 10.1186/s12883-015-0316-2
    Impulse control disorder (ICD) and behaviours (ICB) represent a group of behavioural disorders that have become increasingly recognised in Parkinson's disease (PD) patients who previously used dopaminergic medications, particularly dopamine agonists and levodopa. It has been suggested that these medications can lead to the development of ICB through the abnormal modulation of dopaminergic transmission and signalling in the mesocorticolimbic dopaminergic system. Several studies have reported an association between polymorphisms in the dopamine receptor (DRD) and N-methyl-D-aspartate 2B (GRIN2B) genes with the development of ICB in PD (PD-ICB) patients. Thus, this study aimed to investigate the association of selected polymorphisms within the DRD and GRIN2B genes with the development of ICB among PD patients using high resolution melt (HRM) analysis.
    Matched MeSH terms: Protein-Serine-Threonine Kinases/genetics
  10. Ibrahim K, Abdul Murad NA, Harun R, Jamal R
    Int J Mol Med, 2020 Aug;46(2):685-699.
    PMID: 32468002 DOI: 10.3892/ijmm.2020.4619
    Glioblastoma multiforme (GBM) is an aggressive type of brain tumour that commonly exhibits resistance to treatment. The tumour is highly heterogenous and complex kinomic alterations have been reported leading to dysregulation of signalling pathways. The present study aimed to investigate the novel kinome pathways and to identify potential therapeutic targets in GBM. Meta‑analysis using Oncomine identified 113 upregulated kinases in GBM. RNAi screening was performed on identified kinases using ON‑TARGETplus siRNA library on LN18 and U87MG. Tousled‑like kinase 1 (TLK1), which is a serine/threonine kinase was identified as a potential hit. In vitro functional validation was performed as the role of TLK1 in GBM is unknown. TLK1 knockdown in GBM cells significantly decreased cell viability, clonogenicity, proliferation and induced apoptosis. TLK1 knockdown also chemosensitised the GBM cells to the sublethal dose of temozolomide. The downstream pathways of TLK1 were examined using microarray analysis, which identified the involvement of DNA replication, cell cycle and focal adhesion signalling pathways. In vivo validation of the subcutaneous xenografts of stably transfected sh‑TLK1 U87MG cells demonstrated significantly decreased tumour growth in female BALB/c nude mice. Together, these results suggested that TLK1 may serve a role in GBM survival and may serve as a potential target for glioma.
    Matched MeSH terms: Protein-Serine-Threonine Kinases/genetics
  11. Martin D, Degese MS, Vitale-Cross L, Iglesias-Bartolome R, Valera JLC, Wang Z, et al.
    Nat Commun, 2018 07 09;9(1):2372.
    PMID: 29985391 DOI: 10.1038/s41467-018-04590-1
    Dysregulation of the Hippo signaling pathway and the consequent YAP1 activation is a frequent event in human malignancies, yet the underlying molecular mechanisms are still poorly understood. A pancancer analysis of core Hippo kinases and their candidate regulating molecules revealed few alterations in the canonical Hippo pathway, but very frequent genetic alterations in the FAT family of atypical cadherins. By focusing on head and neck squamous cell carcinoma (HNSCC), which displays frequent FAT1 alterations (29.8%), we provide evidence that FAT1 functional loss results in YAP1 activation. Mechanistically, we found that FAT1 assembles a multimeric Hippo signaling complex (signalome), resulting in activation of core Hippo kinases by TAOKs and consequent YAP1 inactivation. We also show that unrestrained YAP1 acts as an oncogenic driver in HNSCC, and that targeting YAP1 may represent an attractive precision therapeutic option for cancers harboring genomic alterations in the FAT1 tumor suppressor genes.
    Matched MeSH terms: Protein-Serine-Threonine Kinases/genetics
  12. Zhou X, Li Y, Wang W, Wang S, Hou J, Zhang A, et al.
    Theranostics, 2020;10(21):9443-9457.
    PMID: 32863938 DOI: 10.7150/thno.46078
    Objective: Esophageal squamous cell carcinoma (ESCC) is one of the most commonly diagnosed cancer types in China. Recent genomic sequencing analysis indicated the over-activation of Hippo/YAP signaling might play important roles for the carcinogenic process and progression for ESCC patients. However, little is known about the molecular mechanisms that controls Hippo signaling activity in ESCC. Our previous studies indicated that PLCE1-an important risk factor for ESCC-linked to ESCC progression through snail signaling, during this period, we found PARK2 was an important downstream target of PLCE1-snail axis. PARK2 was decreased in ESCC human samples, and correlated with good prognosis in ESCC patients. Further research showed that PARK2 could inhibit YAP, which functions as key downstream effectors of the Hippo pathway. Here, we aim to reveal the molecular mechanisms of PARK2 modulated Hippo pathway in ESCC. Methods: To evaluate the function of PARK2 in ESCC, we used a tissue microarray (TMA) of 223 human ESCC patients and immunohistochemistry to analyze the correlation between PARK2 expression and clinicopathologic variables. Depletion of endogenous PARK2 and YAP from ESCC cells using CRISPR/Cas9 technologies. Flow cytometry and EdU cell proliferation assay were used to detect proliferation of ESCC cells. Nude mice subcutaneous injection and Ki-67 staining were used to evaluate tumor growth in vivo. Migration and invasion assays were performed. In addition, lung metastasis models in mice were used to validate the function of PARK2 in vivo. Identification of PARK2 involved in hippo pathway was achieved by expression microarray screening, double immunofluorescence staining and co-immunoprecipitation assays. The RNA-seq analysis results were validated through quantitative real-time PCR (qRT-PCR) analysis. The protein half-life of YAP was analyzed by Cycloheximide assay, and the TEAD activity was detected by Luciferase reporter assays. Results: Clinical sample of ESCC revealed that low PARK2 expression correlated with late tumor stage (P < 0.001), poor differentiation (P < 0.04), lymph node (P < 0.001) and distant metastasis (P = 0.0087). Multivariate Cox proportional regression analysis further revealed that PARK2 expression (P = 0.032) is an independent prognostic factor for the overall survival of ESCC patients. Besides, the immunohistochemistry results showed that PARK2 negatively correlated with YAP protein level (P < 0.001). PARK2 depletion promotes ESCC progression both through Hippo/YAP axis, while PARK2 overexpression suppresses ESCC tumor progression by Hippo signaling. Co-IP and ubiquitination assays revealed that PARK2 could interact with YAP in the cytosol and promotes YAP K48-linked ubiquitination at K90 sites. Conclusion: Clinical sample analysis and mechanistic study have validated PARK2 as a tumor suppressor for ESCC. Multivariate Cox proportional regression analysis further revealed that PARK2 is an independent prognostic factor for the overall survival of ESCC patients. Cellular and molecular mechanisms in this study showed that PARK2 associated with YAP protein in the cytosol, promoted YAP ubiquitination and proteasome-dependent degradation in ESCC cells. Therefore, as a novel modulator for Hippo signaling, modulation of PARK2 activity or gene expression level could be an appealing strategy to treat esophageal.
    Matched MeSH terms: Protein-Serine-Threonine Kinases/genetics*
  13. Chan HH, Koh RY, Lim CL, Leong CO
    Curr Alzheimer Res, 2019;16(10):907-918.
    PMID: 31642777 DOI: 10.2174/1567205016666191023102422
    Alzheimer's Disease (AD) is an age-dependent neurodegenerative disorder, the most common type of dementia that is clinically characterized by the presence of beta-amyloid (Aβ) extracellularly and intraneuronal tau protein tangles that eventually leads to the onset of memory and cognition impairment, development of psychiatric symptoms and behavioral disorders that affect basic daily activities. Current treatment approved by the U.S Food and Drug Administration (FDA) for AD is mainly focused on the symptoms but not on the pathogenesis of the disease. Recently, receptor-interacting protein kinase 1 (RIPK1) has been identified as a key component in the pathogenesis of AD through necroptosis. Furthermore, genetic and pharmacological suppression of RIPK1 has been shown to revert the phenotype of AD and its mediating pathway is yet to be deciphered. This review is aimed to provide an overview of the pathogenesis and current treatment of AD with the involvement of autophagy as well as providing a novel insight into RIPK1 in reverting the progression of AD, probably through an autophagy machinery.
    Matched MeSH terms: Receptor-Interacting Protein Serine-Threonine Kinases/genetics
  14. Blin J, Ahmad Z, Rampal LR, Mohtarrudin N, Tajudin AK, Adnan RS
    Genes Genet Syst, 2013;88(3):199-209.
    PMID: 24025248
    Identifying susceptible genes associated with the pathogenesis of atherosclerosis (ATH) may contribute toward better management of this condition. This preliminary study was aimed at assessing the expression levels of 11 candidate genes, namely tumor protein (TP53), transforming growth factor, beta receptor II (TGFBR2), cysthathionenine-beta-synthase (CBS), insulin receptor substrate 1 (IRS1), lipoprotein lipase (LPL), methylenetetrahydrofolate reductase (MTHFR), thrombomodulin (THBD), lecithin-cholesterol acyltransferase (LCAT), matrix metallopeptidase 9 (MMP9), low density lipoprotein receptor (LDLR), and arachidonate 5-lipoxygenase-activating protein (ALOX5AP) genes associated with ATH. Twelve human coronary artery tissues (HCATs) were obtained from deceased subjects who underwent post-mortem procedures. Six atherosclerotic coronary artery tissue (ACAT) samples representing the cases and non-atherosclerotic coronary artery tissue (NCAT) samples as controls were gathered based on predetermined inclusion and exclusion criteria. Gene expression levels were assessed using the GenomeLab Genetic Analysis System (GeXP). The results showed that LDLR, TP53, and MMP9 expression levels were significantly increased in ACAT compared to NCAT samples (p < 0.05). Thus, LDLR, TP53, and MMP9 genes may play important roles in the development of ATH in a Malaysian study population.
    Matched MeSH terms: Protein-Serine-Threonine Kinases/genetics
  15. Milne RL, Burwinkel B, Michailidou K, Arias-Perez JI, Zamora MP, Menéndez-Rodríguez P, et al.
    Hum Mol Genet, 2014 Nov 15;23(22):6096-111.
    PMID: 24943594 DOI: 10.1093/hmg/ddu311
    Candidate variant association studies have been largely unsuccessful in identifying common breast cancer susceptibility variants, although most studies have been underpowered to detect associations of a realistic magnitude. We assessed 41 common non-synonymous single-nucleotide polymorphisms (nsSNPs) for which evidence of association with breast cancer risk had been previously reported. Case-control data were combined from 38 studies of white European women (46 450 cases and 42 600 controls) and analyzed using unconditional logistic regression. Strong evidence of association was observed for three nsSNPs: ATXN7-K264R at 3p21 [rs1053338, per allele OR = 1.07, 95% confidence interval (CI) = 1.04-1.10, P = 2.9 × 10(-6)], AKAP9-M463I at 7q21 (rs6964587, OR = 1.05, 95% CI = 1.03-1.07, P = 1.7 × 10(-6)) and NEK10-L513S at 3p24 (rs10510592, OR = 1.10, 95% CI = 1.07-1.12, P = 5.1 × 10(-17)). The first two associations reached genome-wide statistical significance in a combined analysis of available data, including independent data from nine genome-wide association studies (GWASs): for ATXN7-K264R, OR = 1.07 (95% CI = 1.05-1.10, P = 1.0 × 10(-8)); for AKAP9-M463I, OR = 1.05 (95% CI = 1.04-1.07, P = 2.0 × 10(-10)). Further analysis of other common variants in these two regions suggested that intronic SNPs nearby are more strongly associated with disease risk. We have thus identified a novel susceptibility locus at 3p21, and confirmed previous suggestive evidence that rs6964587 at 7q21 is associated with risk. The third locus, rs10510592, is located in an established breast cancer susceptibility region; the association was substantially attenuated after adjustment for the known GWAS hit. Thus, each of the associated nsSNPs is likely to be a marker for another, non-coding, variant causally related to breast cancer risk. Further fine-mapping and functional studies are required to identify the underlying risk-modifying variants and the genes through which they act.
    Matched MeSH terms: Protein-Serine-Threonine Kinases/genetics
  16. Szoltysek K, Ciardullo C, Zhou P, Walaszczyk A, Willmore E, Rand V, et al.
    Int J Mol Sci, 2020 Oct 16;21(20).
    PMID: 33081245 DOI: 10.3390/ijms21207663
    Chronic lymphocytic leukemia (CLL) is the most common adult leukemia in the Western World and it is characterized by a marked degree of clinical heterogeneity. An impaired balance between pro- and anti-apoptotic stimuli determines chemorefractoriness and outcome. The low proliferation rate of CLL cells indicates that one of the primary mechanisms involved in disease development may be an apoptotic failure. Here, we study the clinical and functional significance of DRAK2, a novel stress response kinase that plays a critical role in apoptosis, T-cell biology, and B-cell activation in CLL. We have analyzed CLL patient samples and showed that low expression levels of DRAK2 were significantly associated with unfavorable outcome in our CLL cohort. DRAK2 expression levels showed a positive correlation with the expression of DAPK1, and TGFBR1. Consistent with clinical data, the downregulation of DRAK2 in MEC-1 CLL cells strongly increased cell viability and proliferation. Further, our transcriptome data from MEC-1 cells highlighted MAPK, NF-κB, and Akt and as critical signaling hubs upon DRAK2 knockdown. Taken together, our results indicate DRAK2 as a novel marker of CLL survival that plays key regulatory roles in CLL prognosis.
    Matched MeSH terms: Protein-Serine-Threonine Kinases/genetics
  17. Tai ES, Sim XL, Ong TH, Wong TY, Saw SM, Aung T, et al.
    J Lipid Res, 2009 Mar;50(3):514-520.
    PMID: 18987386 DOI: 10.1194/jlr.M800456-JLR200
    We conducted a cross-sectional study of Malay participants aged 40-80 years (n = 2,932) to examine the associations between polymorphisms at newly identified, lipid-associated loci with blood lipid levels and prevalent cardiovascular disease (CVD) in a Malay population in Asia. A polymorphism adjacent to the TRIB1 locus (rs17321515) was associated with elevated total cholesterol and LDL-cholesterol (LDL-C) after adjustment for age and sex (both P values <0.007) and with increased risk of coronary heart disease and CVD [odds ratio (OR) 1.23, 95% confidence interval (95% CI) 1.03-1.46; and OR 1.2, 95% CI 1.02-1.42, respectively] under an additive model of inheritance. In addition, using recessive models of inheritance, polymorphisms on chromosome 19 adjacent to the CILP2 and PBX4 loci (rs16996148) and on chromosome 1 at the GALNT2 locus (rs4846914) were associated with elevated HDL-C (P = 0.005) and lower LDL-C (P = 0.048), respectively. Although novel, the former is consistent with the association between this polymorphism and lower blood triglycerides observed in the initial studies conducted in populations of European ancestry. Neither showed statistically significant association with CVD. These observations should form the basis of further investigation to identify the causative polymorphisms at this locus, and also to understand the mechanistic roles that this protein may play in lipoprotein metabolism in Asians and other populations.
    Matched MeSH terms: Protein-Serine-Threonine Kinases/genetics
  18. Hampras SS, Sucheston-Campbell LE, Cannioto R, Chang-Claude J, Modugno F, Dörk T, et al.
    Oncotarget, 2016 10 25;7(43):69097-69110.
    PMID: 27533245 DOI: 10.18632/oncotarget.10215
    BACKGROUND: Regulatory T (Treg) cells, a subset of CD4+ T lymphocytes, are mediators of immunosuppression in cancer, and, thus, variants in genes encoding Treg cell immune molecules could be associated with ovarian cancer.

    METHODS: In a population of 15,596 epithelial ovarian cancer (EOC) cases and 23,236 controls, we measured genetic associations of 1,351 SNPs in Treg cell pathway genes with odds of ovarian cancer and tested pathway and gene-level associations, overall and by histotype, for the 25 genes, using the admixture likelihood (AML) method. The most significant single SNP associations were tested for correlation with expression levels in 44 ovarian cancer patients.

    RESULTS: The most significant global associations for all genes in the pathway were seen in endometrioid ( p = 0.082) and clear cell ( p = 0.083), with the most significant gene level association seen with TGFBR2 ( p = 0.001) and clear cell EOC. Gene associations with histotypes at p < 0.05 included: IL12 ( p = 0.005 and p = 0.008, serous and high-grade serous, respectively), IL8RA ( p = 0.035, endometrioid and mucinous), LGALS1 ( p = 0.03, mucinous), STAT5B ( p = 0.022, clear cell), TGFBR1 ( p = 0.021 endometrioid) and TGFBR2 ( p = 0.017 and p = 0.025, endometrioid and mucinous, respectively).

    CONCLUSIONS: Common inherited gene variation in Treg cell pathways shows some evidence of germline genetic contribution to odds of EOC that varies by histologic subtype and may be associated with mRNA expression of immune-complex receptor in EOC patients.

    Matched MeSH terms: Protein-Serine-Threonine Kinases/genetics*
  19. Stebbing J, Shah K, Lit LC, Gagliano T, Ditsiou A, Wang T, et al.
    Oncogene, 2018 06;37(23):3113-3130.
    PMID: 29540829 DOI: 10.1038/s41388-018-0197-0
    Lemur tyrosine kinase 3 (LMTK3) is an oncogenic kinase that is involved in different types of cancer (breast, lung, gastric, colorectal) and biological processes including proliferation, invasion, migration, chromatin remodeling as well as innate and acquired endocrine resistance. However, the role of LMTK3 in response to cytotoxic chemotherapy has not been investigated thus far. Using both 2D and 3D tissue culture models, we found that overexpression of LMTK3 decreased the sensitivity of breast cancer cell lines to cytotoxic (doxorubicin) treatment. In a mouse model we showed that ectopic overexpression of LMTK3 decreases the efficacy of doxorubicin in reducing tumor growth. Interestingly, breast cancer cells overexpressing LMTK3 delayed the generation of double strand breaks (DSBs) after exposure to doxorubicin, as measured by the formation of γH2AX foci. This effect was at least partly mediated by decreased activity of ataxia-telangiectasia mutated kinase (ATM) as indicated by its reduced phosphorylation levels. In addition, our RNA-seq analyses showed that doxorubicin differentially regulated the expression of over 700 genes depending on LMTK3 protein expression levels. Furthermore, these genes were found to promote DNA repair, cell viability and tumorigenesis processes / pathways in LMTK3-overexpressing MCF7 cells. In human cancers, immunohistochemistry staining of LMTK3 in pre- and post-chemotherapy breast tumor pairs from four separate clinical cohorts revealed a significant increase of LMTK3 following both doxorubicin and docetaxel based chemotherapy. In aggregate, our findings show for the first time a contribution of LMTK3 in cytotoxic drug resistance in breast cancer.
    Matched MeSH terms: Protein-Serine-Threonine Kinases/genetics
  20. Merlot AM, Shafie NH, Yu Y, Richardson V, Jansson PJ, Sahni S, et al.
    Biochem Pharmacol, 2016 06 01;109:27-47.
    PMID: 27059255 DOI: 10.1016/j.bcp.2016.04.001
    The endoplasmic reticulum (ER) plays a major role in the synthesis, maturation and folding of proteins and is a critical calcium (Ca(2+)) reservoir. Cellular stresses lead to an overwhelming accumulation of misfolded proteins in the ER, leading to ER stress and the activation of the unfolded protein response (UPR). In the stressful tumor microenvironment, the UPR maintains ER homeostasis and enables tumor survival. Thus, a novel strategy for cancer therapeutics is to overcome chronically activated ER stress by triggering pro-apoptotic pathways of the UPR. Considering this, the mechanisms by which the novel anti-cancer agent, Dp44mT, can target the ER stress response pathways were investigated in multiple cell-types. Our results demonstrate that the cytotoxic chelator, Dp44mT, which forms redox-active metal complexes, significantly: (1) increased ER stress-associated pro-apoptotic signaling molecules (i.e., p-eIF2α, ATF4, CHOP); (2) increased IRE1α phosphorylation (p-IRE1α) and XBP1 mRNA splicing; (3) reduced expression of ER stress-associated cell survival signaling molecules (e.g., XBP1s and p58(IPK)); (4) increased cleavage of the transcription factor, ATF6, which enhances expression of its downstream targets (i.e., CHOP and BiP); and (5) increased phosphorylation of CaMKII that induces apoptosis. In contrast to Dp44mT, the iron chelator, DFO, which forms redox-inactive iron complexes, did not affect BiP, p-IRE1α, XBP1 or p58(IPK) levels. This study highlights the ability of a novel cancer therapeutic (i.e., Dp44mT) to target the pro-apoptotic functions of the UPR via cellular metal sequestration and redox stress. Assessment of ER stress-mediated apoptosis is fundamental to the understanding of the pharmacology of chelation for cancer treatment.
    Matched MeSH terms: Protein-Serine-Threonine Kinases/genetics*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links