METHODS: We analysed the cancerous and adjacent non-cancerous formalin-fixed paraffin embedded (FFPE) tissue of 83 CRC patients from a single medical centre in Malaysia. TaqMan probe-based qPCR targeting the 16S rRNA gene was used to detect the presence of FN in the extracted FFPE DNA. The differences in FN expression between cancer and non-cancer tissues were evaluated. Association studies between FN infection in the tumour and relative FN abundance with available clinical data were conducted.
RESULTS: FN was more abundant in the cancerous tissue compared to non-cancerous tissue (p = 0.0025). FN infection in the tumour was significantly associated with lymph node metastasis (p = 0.047) and cancer staging (p = 0.032), but not with other clinicopathologic variables. In double-positive patients where FN was detected in both cancerous and non-cancerous tissue, the expression fold-change of FN, calculated using 2-ΔΔCT formula, was significantly higher in patients with tumour size equal to or greater than 5 cm (p = 0.033) and in KRAS-mutated patients (p = 0.046).
CONCLUSIONS: FN is enriched in CRC tumour tissue and is associated with tumour size, lymph node metastasis, cancer staging, and KRAS mutation in this single-centre small cohort study.
SIGNIFICANCE: Mutant HRAS drives metastasis of head and neck cancer by switching off the Hippo pathway to activate the YAP1-AXL axis and to stimulate lymphovascular angiogenesis.
METHODS: The retrospective arm (2011-2014) included adults with metastatic colorectal cancer who had initiated first-line therapy with ≥1 post-baseline visit and survival data. The prospective arm (2014-2019) enrolled newly diagnosed patients with histologically proven metastatic colorectal cancer with ≥1 measurable lesion per Response Evaluation Criteria in Solid Tumors, and tissue availability for biomarker analysis. Data look-back and follow-up were 2 years; the rate of RAS mutation was evaluated.
RESULTS: RAS testing was ordered for patients in retrospective (326/417) and prospective (407/500) studies. In the former, testing was typically prescribed after first-line treatment initiation, significantly more in patients with stage IV disease (P < .005), resulting in the addition of targeted therapy (41.8% anti-epidermal growth factor receptor, 30.2% anti-vascular endothelial growth factor) in wild-type metastatic colorectal cancer, and significantly impacted the treatment of left-sided tumors (P = .037). In the latter, 58.4% were RAS wild-type; 41.6% were RAS mutant. Non-prescription of RAS testing was attributed to test unavailability, financial, or medical rea sons; predictors of testing prescription were older age, primary tumor in ascending colon, and high tumor grade. RAS status knowledge resulted in the addition of anti-vascular endothelial growth factor (20.4%) or anti-epidermal growth factor receptor therapy (21.2%).
CONCLUSION: Before 2014, RAS testing in patients with colorectal cancer in the Middle East and North Africa was often performed after first-line treatment. Testing is more routine in newly diagnosed patients, potentially shifting early treatment patterns.
METHODS: Expression of SPRY genes in human and mice PDAC was analyzed using The Cancer Genome Atlas and Gene Expression Omnibus datasets, and by immunohistochemistry analysis. Gain-of-function, loss-of-function of Spry1 and orthotopic xenograft model were adopted to investigate the function of Spry1 in mice PDAC. Bioinformatics analysis, transwell and flowcytometry analysis were used to identify the effects of SPRY1 on immune cells. Co-immunoprecipitation and K-ras4B G12V overexpression were used to identify molecular mechanism.
RESULTS: SPRY1 expression was remarkably increased in PDAC tissues and positively associated with poor prognosis of PDAC patients. SPRY1 knockdown suppressed tumor growth in mice. SPRY1 was found to promote CXCL12 expression and facilitate neutrophil and macrophage infiltration via CXCL12-CXCR4 axis. Pharmacological inhibition of CXCL12-CXCR4 largely abrogated the oncogenic functions of SPRY1 by suppressing neutrophil and macrophage infiltration. Mechanistically, SPRY1 interacted with ubiquitin carboxy-terminal hydrolase L1 to induce activation of nuclear factor κB signaling and ultimately increase CXCL12 expression. Moreover, SPRY1 transcription was dependent on KRAS mutation and was mediated by MAPK-ERK signaling.
CONCLUSION: High expression of SPRY1 can function as an oncogene in PDAC by promoting cancer-associated inflammation. Targeting SPRY1 might be an important approach for designing new strategy of tumor therapy.
PATIENTS AND METHODS: APEC was a nonrandomized phase 2 trial conducted in the Asia-Pacific region. Patients (n = 289) received once-every-2-weeks cetuximab with investigator's choice of chemotherapy (FOLFOX or FOLFIRI). The primary end point was best confirmed overall response rate (BORR); progression-free survival (PFS) and overall survival (OS) were secondary end points. Early tumor shrinkage (ETS) and depth of response (DpR) were also evaluated.
RESULTS: In the KRAS wt population, BORR was 58.8%, median PFS 11.1 months, and median OS 26.8 months. Expanded RAS mutational analysis revealed that patients with RAS wt mCRC had better outcomes (BORR = 64.7%; median PFS = 13.0 months; median OS = 28.4 months). The data suggest that ETS and DpR may be associated with survival outcomes in the RAS wt population. Although this study was not designed to formally assess differences in outcome between treatment subgroups, efficacy results appeared similar for patients treated with FOLFOX and FOLFIRI. There were no new safety findings; in particular, grade 3/4 skin reactions were within clinical expectations.
CONCLUSION: The observed activity and safety profile is similar to that reported in prior first-line pivotal studies involving weekly cetuximab, suggesting once-every-2-weeks cetuximab is effective and tolerable as first-line therapy and may represent an alternative to weekly administration.