Displaying publications 1 - 20 of 30 in total

Abstract:
Sort:
  1. Kumarasamy G, Abdus Sani AA, Olivos-García A, Noordin R, Othman N
    Pathog Glob Health, 2020 09;114(6):333-342.
    PMID: 32536281 DOI: 10.1080/20477724.2020.1780402
    Amoebiasis, caused by Entamoeba histolytica, is one of the leading parasitic infections in the world. This study was aimed at profiling antigenic membrane proteins of a virulent variant of E. histolytica HM-1:IMSS. The membrane proteins were extracted using ProteoExtract® kit (Merck, Darmstadt, Germany) or conventional method, separated using OFFGEL 3100 fractionator (Agilent Technologies, Santa Clara, California), followed by SDS-PAGE and Western blot analysis. Selected antigenic membrane proteins were identified using LC-ESI-MS/MS. Subsequently, the proteins were classified according to their biological processes and predictions were made on membrane and membrane-associated proteins. When the proteins were probed with pooled sera from amoebic liver abscess (ALA) patients, 10 and 15 antigenic proteins with molecular weights 25 to 200 kDa were identified using the ProteoExtract® kit and conventional method, respectively. LC-ESI-MS/MS identified 13 antigenic proteins, and both extraction methods predicted six of them as membrane and membrane-associated proteins. The topmost biological processes which comprised of six proteins were involved in cellular processes.. These antigenic membrane proteins merit further investigations as potential candidates for vaccine studies.
    Matched MeSH terms: Protozoan Proteins/immunology*
  2. Foo A, Carter R, Lambros C, Graves P, Quakyi I, Targett GA, et al.
    Am J Trop Med Hyg, 1991 Jun;44(6):623-31.
    PMID: 1713424
    Monoclonal antibodies (MAbs) directed against different epitope regions on three sexual stage-specific gamete surface proteins of Plasmodium falciparum, Pfs 25, Pfs 230, and Pfs 48/45, were used to study the genetic diversity of these epitopes among fresh isolates of P. falciparum from Malaysia, using immunofluorescence microscopy (IFA). Among 45 Malaysian isolates, one epitope of Pfs 25, designated region I, showed evidence of variable reactivity with MAbs among different isolates; the Pfs 25 epitope, region II, was universally recognized by MAbs in all isolates. Two apparently distinct epitope regions of Pfs 230 were defined by MAbs, one of which was universally recognized by MAbs among the 45 isolates; the other was conserved in all but three isolates. The epitope regions of gamete-surface protein Pfs 48/45, designated regions I, IIa, IIb, IIc, III, and IV, were examined for reactivity by IFA in 33 isolates. Epitope regions I, IIb, III, and IV were conserved in all isolates; regions IIa and IIc existed in variant forms.
    Matched MeSH terms: Protozoan Proteins/immunology*
  3. Atique Ahmed M, Kang HJ, Quan FS
    Korean J Parasitol, 2019 Aug;57(4):445-450.
    PMID: 31533414 DOI: 10.3347/kjp.2019.57.4.445
    Human infections due to the monkey malaria parasite Plasmodium knowlesi is increasingly being reported from most Southeast Asian countries specifically Malaysia. The parasite causes severe and fatal malaria thus there is a need for urgent measures for its control. In this study, the level of polymorphisms, haplotypes and natural selection of full-length pkmsp8 in 37 clinical samples from Malaysian Borneo along with 6 lab-adapted strains were investigated. Low levels of polymorphism were observed across the full-length gene, the double epidermal growth factor (EGF) domains were mostly conserved, and non-synonymous substitutions were absent. Evidence of strong negative selection pressure in the non-EGF regions were found indicating functional constrains acting at different domains. Phylogenetic haplotype network analysis identified shared haplotypes and indicated geographical clustering of samples originating from Peninsular Malaysia and Malaysian Borneo. This is the first study to genetically characterize the full-length msp8 gene from clinical isolates of P. knowlesi from Malaysia; however, further functional characterization would be useful for future rational vaccine design.
    Matched MeSH terms: Protozoan Proteins/immunology
  4. Muh F, Lee SK, Hoque MR, Han JH, Park JH, Firdaus ER, et al.
    Malar J, 2018 Jul 27;17(1):272.
    PMID: 30049277 DOI: 10.1186/s12936-018-2420-4
    BACKGROUND: The rapid process of malaria erythrocyte invasion involves ligand-receptor interactions. Inducing antibodies against specific ligands or receptors that abrogate the invasion process is a key challenge for blood stage vaccine development. However, few candidates were reported and remain to be validated for the discovery of new vaccine candidates in Plasmodium knowlesi.

    METHODS: In order to investigate the efficacy of pre-clinical vaccine candidates in P. knowlesi-infected human cases, this study describes an in vitro invasion inhibition assay, using a P. knowlesi strain adapted to in vitro growth in human erythrocytes, PkA1-H.1. Recombinant proteins of P. knowlesi Duffy binding protein alpha (PkDBPα) and apical membrane antigen 1 (PkAMA1) were produced in Escherichia coli system and rabbit antibodies were generated from immune animals.

    RESULTS: PkDBPα and PkAMA1 recombinant proteins were expressed as insoluble and produced as a functional refolded form for this study. Antibodies against PkDBPα and PkAMA1 specifically recognized recombinant proteins and native parasite proteins in schizont-stage parasites on the merozoite organelles. Single and combination of anti-PkDBPα and anti-PkAMA1 antibodies elicited strong growth inhibitory effects on the parasite in concentration-dependent manner. Meanwhile, IgG prevalence of PkDBPα and PkAMA1 were observed in 13.0 and 46.7% in human clinical patients, respectively.

    CONCLUSION: These data provide support for the validation of in vitro growth inhibition assay using antibodies of DBPα and AMA1 in human-adapted P. knowlesi parasite PkA1-H.1 strain.

    Matched MeSH terms: Protozoan Proteins/immunology*
  5. Maspi N, Ghaffarifar F, Sharifi Z, Dalimi A, Khademi SZ
    Malays J Pathol, 2017 Dec;39(3):267-275.
    PMID: 29279589
    Vaccination would be the most important strategy for the prevention and elimination of leishmaniasis. The aim of the present study was to compare the immune responses induced following DNA vaccination with LACK (Leishmania analogue of the receptor kinase C), TSA (Thiol-specific-antioxidant) genes alone or LACK-TSA fusion against cutaneous leishmaniasis (CL). Cellular and humoral immune responses were evaluated before and after challenge with Leishmania major (L. major). In addition, the mean lesion size was also measured from 3th week post-infection. All immunized mice showed a partial immunity characterized by higher interferon (IFN)-γ and Immunoglobulin G (IgG2a) levels compared to control groups (p<0.05). IFN-γ/ Interleukin (IL)-4 and IgG2a/IgG1 ratios demonstrated the highest IFN-γ and IgG2a levels in the group receiving LACK-TSA fusion. Mean lesion sizes reduced significantly in all immunized mice compared with control groups at 7th week post-infection (p<0.05). In addition, there was a significant reduction in mean lesion size of LACK-TSA and TSA groups than LACK group after challenge (p<0.05). In the present study, DNA immunization promoted Th1 immune response and confirmed the previous observations on immunogenicity of LACK and TSA antigens against CL. Furthermore, this study demonstrated that a bivalent vaccine can induce stronger immune responses and protection against infectious challenge with L. major.
    Matched MeSH terms: Protozoan Proteins/immunology*
  6. Nakamura C, Liu MM, Goo YK, Zhang GH, Jia HL, Kumagai A, et al.
    Trop Biomed, 2020 Dec 01;37(4):1029-1037.
    PMID: 33612755 DOI: 10.47665/tb.37.4.1029
    Previously, we have identified a gene encoding thrombospondin-related anonymous protein of Babesia gibsoni (BgTRAP), and have shown that the antisera raised against recombinant BgTRAP expressed in Escherichia coli inhibited the growth of parasites. In the present study, a recombinant vaccinia virus expressing the BgTRAP (VV/BgTRAP) was constructed. A specific band with a molecular mass of 80 kDa, which is similar to that of native BgTRAP on the merozoites of B. gibsoni, was detected in the supernatant of VV/ BgTRAP-infected RK13 cells. Mice inoculated with VV/BgTRAP produced a specific antiBgTRAP response. The antiserum against VV/BgTRAP showed reactivity against the native BgTRAP on parasites. These results indicated that the recombinant vaccinia virus expressing BgTRAP might be a vaccine candidate against canine B. gibsoni infection.
    Matched MeSH terms: Protozoan Proteins/immunology*
  7. Vishalkumar P, Jayaprakash NS, Desai PK, Krishnan V, Vijayalakshmi MA
    Trop Biomed, 2020 Dec 01;37(4):1050-1061.
    PMID: 33612757 DOI: 10.47665/tb.37.4.1050
    OBJECTIVE: To evaluate the sensitivity and the stability of the monoclonal antibodies (Aa3c10, b10c1), against truncated Histidine-rich protein 2 (PfHRP2), developed using smart polymer, poly N-isopropylacrylamide, as adjuvant for malarial diagnostic applications in comparison with the available commercial antibodies.

    METHODS: Two hybridoma clones (Aa3c10, b10c1) were used for the production of ascites in BALB/c mice. Purification of monoclonal antibodies from the ascites was carried out using affinity columns. The thermal stability study of monoclonal antibodies was done by storing it at 37°C and 45°C for thirty days. The stored antibodies were analyzed using SDS-PAGE and flow-through device where the antigenantibody interaction was visualized by Protein A colloidal gold solution. Sensitivity was determined by endpoint dilution ELISA and the dissociation constant by competitive ELISA. Sensitive pair optimization was done by sandwich ELISA using biotinylated antibodies. Prototype preparation for lateral flow assay had a colloidal gold-based detection system.

    RESULTS: Thermal stability experiments showed that both mAbs (Aa3c10; b10c1) are stable up to thirty days at 45°C while the commercially available mAbs were stable up to fifteen days only. Compared to commercial antibodies, the mAb Aa3c10, showed the highest sensitivity in end-point titre. In sensitive pair optimization, it was observed that the mAb, b10c1, as a detector and the mAb, Aa3c10, as a capture antibody showed the highest absorbance to detect 50pg/ml PfHRP2 antigen. The prototype formulation of lateral flow assay using the mAbs (Aa3c10; b10c1) showed good reactivity with WHO panel and no false-positive results were observed with twenty clinically negative samples and five P. vivax positive samples.

    CONCLUSIONS: The novel monoclonal antibodies (Aa3c10, b10c1) against truncated PfHRP2, could be a strong potential candidates that can be included in making RDTs with better sensitivity and stability.

    Matched MeSH terms: Protozoan Proteins/immunology*
  8. Kotresha D, Noordin R
    APMIS, 2010 Aug;118(8):529-42.
    PMID: 20666734 DOI: 10.1111/j.1600-0463.2010.02629.x
    Toxoplasma gondii is an important human pathogen with a worldwide distribution. It is primarily of medical importance for pregnant women and immunocompromised patients. Primary infection of the former is often associated with fetal infection, which can lead to abortion or severe neonatal malformation. Immunocompromised patients are at risk of contracting the severe form of the disease that may be fatal. Thus, detection of T. gondii infection with high sensitivity and specificity is crucial in the management of the disease. Toxoplasmosis is generally diagnosed by demonstrating specific immunoglobulin M (IgM) and IgG antibodies to toxoplasma antigens in the patient's serum sample. Most of the commercially available tests use T. gondii native antigens and display wide variations in test accuracy. Recombinant antigens have great potential as diagnostic reagents for use in assays to detect toxoplasmosis. Thus in this review, we address recent advances in the use of Toxoplasma recombinant proteins for serodiagnosis of toxoplasmosis.
    Matched MeSH terms: Protozoan Proteins/immunology
  9. Fong MY, Lau YL, Zulqarnain M
    Biotechnol Lett, 2008 Apr;30(4):611-8.
    PMID: 18043869
    The surface antigen 2 (SAG2) gene of the protozoan parasite, Toxoplasma gondii, was cloned and extracellularly expressed in the yeast Pichia pastoris. The effectiveness of the secreted recombinant SAG2 (rSAG2-S) as a serodiagnosis reagent was assessed by western blots and ELISA. In the western blot assay, rSAG2-S reacted with all Toxoplasma-antibody positive human serum samples but not with Toxoplasma-negative samples. In the ELISA, rSAG2-S yielded sensitivity rates ranging from 80% (IgG negative, IgM positive) to 100% (IgG positive, IgM negative). In vivo experiments showed that serum from mice immunized with rSAG2-S reacted specifically with the native SAG2 of T. gondii. These mice were protected when challenged with live cells of T. gondii.
    Matched MeSH terms: Protozoan Proteins/immunology
  10. Vulliez-Le Normand B, Faber BW, Saul FA, van der Eijk M, Thomas AW, Singh B, et al.
    PLoS One, 2015;10(4):e0123567.
    PMID: 25886591 DOI: 10.1371/journal.pone.0123567
    The malaria parasite Plasmodium knowlesi, previously associated only with infection of macaques, is now known to infect humans as well and has become a significant public health problem in Southeast Asia. This species should therefore be targeted in vaccine and therapeutic strategies against human malaria. Apical Membrane Antigen 1 (AMA1), which plays a role in Plasmodium merozoite invasion of the erythrocyte, is currently being pursued in human vaccine trials against P. falciparum. Recent vaccine trials in macaques using the P. knowlesi orthologue PkAMA1 have shown that it protects against infection by this parasite species and thus should be developed for human vaccination as well. Here, we present the crystal structure of Domains 1 and 2 of the PkAMA1 ectodomain, and of its complex with the invasion-inhibitory monoclonal antibody R31C2. The Domain 2 (D2) loop, which is displaced upon binding the Rhoptry Neck Protein 2 (RON2) receptor, makes significant contacts with the antibody. R31C2 inhibits binding of the Rhoptry Neck Protein 2 (RON2) receptor by steric blocking of the hydrophobic groove and by preventing the displacement of the D2 loop which is essential for exposing the complete binding site on AMA1. R31C2 recognizes a non-polymorphic epitope and should thus be cross-strain reactive. PkAMA1 is much less polymorphic than the P. falciparum and P. vivax orthologues. Unlike these two latter species, there are no polymorphic sites close to the RON2-binding site of PkAMA1, suggesting that P. knowlesi has not developed a mechanism of immune escape from the host's humoral response to AMA1.
    Matched MeSH terms: Protozoan Proteins/immunology
  11. Liew CC, Lau YL, Fong MY, Cheong FW
    Am J Trop Med Hyg, 2020 05;102(5):1068-1071.
    PMID: 32189613 DOI: 10.4269/ajtmh.19-0836
    Invasion of human erythrocytes by merozoites of Plasmodium knowlesi involves interaction between the P. knowlesi Duffy binding protein alpha region II (PkDBPαII) and Duffy antigen receptor for chemokines (DARCs) on the erythrocytes. Information is scarce on the binding level of PkDBPαII to different Duffy antigens, Fya and Fyb. This study aims to measure the binding level of two genetically distinct PkDBPαII haplotypes to Fy(a+b-) and Fy(a+b+) human erythrocytes using erythrocyte-binding assay. The binding level of PkDBPαII of Peninsular Malaysian and Malaysian Borneon haplotypes to erythrocytes was determined by counting the number of rosettes formed in the assay. Overall, the Peninsular Malaysian haplotype displayed higher binding activity than the Malaysian Borneon haplotype. Both haplotypes exhibit the same preference to Fy(a+b+) compared with Fy(a+b-), hence justifying the vital role of Fyb in the binding to PkDBPαII. Further studies are needed to investigate the P. knowlesi susceptibility on individuals with different Duffy blood groups.
    Matched MeSH terms: Protozoan Proteins/immunology
  12. Lew MH, Noordin R, Monsur Alam Khan M, Tye GJ
    Pathog Glob Health, 2018 10;112(7):387-394.
    PMID: 30332344 DOI: 10.1080/20477724.2018.1536854
    Toxoplasmosis, a parasitic disease in human and animals, is caused by Toxoplasma gondii. Our previous study has led to the discovery of a novel RAP domain binding protein antigen (TgRA15), an apparent in-vivo induced antigen recognised by antibodies in acutely infected individuals. This study is aimed to evaluate the humoral response and cytokine release elicited by recombinant TgRA15 protein in C57BL/6 mice, demonstrating its potential as a candidate vaccine for Toxoplasma gondii infection. In this study, the recombinant TgRA15 protein was expressed in Escherichia coli, purified and refolded into soluble form. C57BL/6 mice were immunised intradermally with the antigen and CASAC (Combined Adjuvant for Synergistic Activation of Cellular immunity). Antigen-specific humoral and cell-mediated responses were evaluated using Western blot and ELISA. The total IgG, IgG1 and IgG2a antibodies specific to the antigen were significantly increased in treatment group compare to control group. A higher level of interferon gamma (IFN-γ) secretion was demonstrated in the mice group receiving booster doses of rTgRA15 protein, suggesting a potential Th1-mediated response. In conclusion, the rTgRA15 protein has the potential to generate specific antibody response and elicit cellular response, thus potentially serve as a vaccine candidate against T. gondii infection.
    Matched MeSH terms: Protozoan Proteins/immunology
  13. Tommy YB, Lim TS, Noordin R, Saadatnia G, Choong YS
    BMC Struct Biol, 2012 Nov 27;12:30.
    PMID: 23181504 DOI: 10.1186/1472-6807-12-30
    BACKGROUND: Toxoplasma gondii is an intracellular coccidian parasite that causes toxoplasmosis. It was estimated that more than one third of the world population is infected by T. gondii, and the disease is critical in fetuses and immunosuppressed patients. Thus, early detection is crucial for disease diagnosis and therapy. However, the current available toxoplasmosis diagnostic tests vary in their accuracy and the better ones are costly.

    RESULTS: An earlier published work discovered a highly antigenic 12 kDa excretory-secretory (ES) protein of T. gondii which may potentially be used for the development of an antigen detection test for toxoplasmosis. However, the three-dimensional structure of the protein is unknown. Since epitope identification is important prior to designing of a specific antibody for an antigen-detection based diagnostic test, the structural elucidation of this protein is essential. In this study, we constructed a three dimensional model of the 12 kDa ES protein. The built structure possesses a thioredoxin backbone which consists of four α-helices flanking five β-strands at the center. Three potential epitopes (6-8 residues) which can be combined into one "single" epitope have been identified from the built structure as the most potential antibody binding site.

    CONCLUSION: Together with specific antibody design, this work could contribute towards future development of an antigen detection test for toxoplasmosis.

    Matched MeSH terms: Protozoan Proteins/immunology*
  14. Han JH, Cho JS, Ong JJY, Park JH, Nyunt MH, Sutanto E, et al.
    PLoS Negl Trop Dis, 2020 Jul;14(7):e0008202.
    PMID: 32645098 DOI: 10.1371/journal.pntd.0008202
    Plasmodium vivax is the most widespread and difficult to treat cause of human malaria. The development of vaccines against the blood stages of P. vivax remains a key objective for the control and elimination of vivax malaria. Erythrocyte binding-like (EBL) protein family members such as Duffy binding protein (PvDBP) are of critical importance to erythrocyte invasion and have been the major target for vivax malaria vaccine development. In this study, we focus on another member of EBL protein family, P. vivax erythrocyte binding protein (PvEBP). PvEBP was first identified in Cambodian (C127) field isolates and has subsequently been showed its preferences for binding reticulocytes which is directly inhibited by antibodies. We analysed PvEBP sequence from 316 vivax clinical isolates from eight countries including China (n = 4), Ethiopia (n = 24), Malaysia (n = 53), Myanmar (n = 10), Papua New Guinea (n = 16), Republic of Korea (n = 10), Thailand (n = 174), and Vietnam (n = 25). PvEBP gene exhibited four different phenotypic clusters based on the insertion/deletion (indels) variation. PvEBP-RII (179-479 aa.) showed highest polymorphism similar to other EBL family proteins in various Plasmodium species. Whereas even though PvEBP-RIII-V (480-690 aa.) was the most conserved domain, that showed strong neutral selection pressure for gene purifying with significant population expansion. Antigenicity of both of PvEBP-RII (16.1%) and PvEBP-RIII-V (21.5%) domains were comparatively lower than other P. vivax antigen which expected antigens associated with merozoite invasion. Total IgG recognition level of PvEBP-RII was stronger than PvEBP-RIII-V domain, whereas total IgG inducing level was stronger in PvEBP-RIII-V domain. These results suggest that PvEBP-RII is mainly recognized by natural IgG for innate protection, whereas PvEBP-RIII-V stimulates IgG production activity by B-cell for acquired immunity. Overall, the low antigenicity of both regions in patients with vivax malaria likely reflects genetic polymorphism for strong positive selection in PvEBP-RII and purifying selection in PvEBP-RIII-V domain. These observations pose challenging questions to the selection of EBP and point out the importance of immune pressure and polymorphism required for inclusion of PvEBP as a vaccine candidate.
    Matched MeSH terms: Protozoan Proteins/immunology*
  15. Parthasarathy S, Fong MY, Ramaswamy K, Lau YL
    Am J Trop Med Hyg, 2013 May;88(5):883-7.
    PMID: 23509124 DOI: 10.4269/ajtmh.12-0727
    Toxoplasmosis in humans and other animals is caused by the protozoan parasite Toxoplasma gondii. During the process of host cell invasion and parasitophorous vacuole formation by the tachyzoites, the parasite secretes Rhoptry protein 8 (ROP8), an apical secretory organelle. Thus, ROP8 is an important protein for the pathogenesis of T. gondii. The ROP8 DNA was constructed into a pVAX-1 vaccine vector and used for immunizing BALB/c mice. Immunized mice developed immune response characterized by significant antibody responses, antigen-specific proliferation of spleen cells, and production of high levels of IFN-γ (816 ± 26.3 pg/mL). Challenge experiments showed significant levels of increase in the survival period (29 days compared with 9 days in control) in ROP8 DNA vaccinated mice after a lethal challenge with T. gondii. Results presented in this study suggest that ROP8 DNA is a promising and potential vaccine candidate against toxoplasmosis.
    Matched MeSH terms: Protozoan Proteins/immunology*
  16. Rapeah S, Norazmi MN
    Vaccine, 2006 Apr 24;24(17):3646-53.
    PMID: 16494975 DOI: 10.1016/j.vaccine.2006.01.053
    Recombinant Mycobacterium bovis bacille Calmette-Guèrin (rBCG) expressing the malarial epitopes F2R(II)EBA and (NANP)3 as well as two T cell epitopes of the M. tuberculosis ESAT-6 antigen, generated in favour of mycobacterium codon usage elicited specific immune response against these epitopes. Immunised Balb/c mice demonstrated an increase in almost all of the IgG subclasses against both malarial epitopes and enhanced splenocyte proliferative response against the malarial epitopes as well as selected peptides of ESAT-6. Furthermore, flow cytometric analyses showed elevated numbers of CD4+ lymphocytes expressing IFN-gamma and IL-2 against the ESAT-6 peptides, suggesting a specific Th1-mediated response. This study demonstrated that expressing malarial and TB epitopes in a single rBCG construct induced appropriate humoral and cellular immune response against immunogenic epitopes from both organisms.
    Matched MeSH terms: Protozoan Proteins/immunology*
  17. Zainudin NS, Othman N, Muhi J, Abdu Sani AA, Noordin R
    Am J Trop Med Hyg, 2015 Dec;93(6):1268-73.
    PMID: 26392156 DOI: 10.4269/ajtmh.15-0333
    This study was performed to identify circulating Plasmodium falciparum proteins in patient serum, which may be useful as diagnostic markers. Depletion of highly abundant proteins from each pooled serum sample obtained from P. falciparum-infected patients and healthy individuals was performed using the Proteoseek Antibody-Based Albumin/IgG Removal Kit (Thermo Scientific, Rockford, IL). In analysis 1, the depleted serum was analyzed directly by NanoLC-MS/MS. In analysis 2, the depleted serum was separated by two-dimensional electrophoresis followed by western blot analysis. Subsequently, the selected band was analyzed by NanoLC-MS/MS. The result of analysis 1 revealed the presence of two mature erythrocyte surface antigen (MESA) proteins and chloroquine resistance transporter protein (PfCRT). In addition, analysis 2 revealed an antigenic 75-kDa band when the membrane was probed with purified IgG from the pooled serum obtained from P. falciparum-infected patients. MS/MS analysis of this protein band revealed fragments of P. falciparum MESA proteins. Thus, in this study, two different analyses revealed the presence of Plasmodium MESA protein in pooled serum from malaria patients; thus, this protein should be further investigated to determine its usefulness as a diagnostic marker.
    Matched MeSH terms: Protozoan Proteins/immunology*
  18. Fong MY, Ahmed MA, Wong SS, Lau YL, Sitam F
    PLoS One, 2015;10(9):e0137734.
    PMID: 26379157 DOI: 10.1371/journal.pone.0137734
    Plasmodium knowlesi is a simian malaria parasite that has been identified to cause malaria in humans. To date, several thousand cases of human knowlesi malaria have been reported around Southeast Asia. Thus far, there is no detailed study on genetic diversity and natural selection of P. knowlesi circumsporozoite protein (CSP), a prominent surface antigen on the sporozoite of the parasite. In the present study, the genetic diversity and natural selection acting on the nonrepeat regions of the gene encoding P. knowlesi CSP were investigated, focusing on the T-cell epitope regions at the C-terminal of the protein.
    Matched MeSH terms: Protozoan Proteins/immunology
  19. Tessema SK, Utama D, Chesnokov O, Hodder AN, Lin CS, Harrison GLA, et al.
    Infect Immun, 2018 08;86(8).
    PMID: 29784862 DOI: 10.1128/IAI.00485-17
    Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) mediates parasite sequestration to the cerebral microvasculature via binding of DBLβ domains to intercellular adhesion molecule 1 (ICAM1) and is associated with severe cerebral malaria. In a cohort of 187 young children from Papua New Guinea (PNG), we examined baseline levels of antibody to the ICAM1-binding PfEMP1 domain, DBLβ3PF11_0521, in comparison to four control antigens, including NTS-DBLα and CIDR1 domains from another group A variant and a group B/C variant. Antibody levels for the group A antigens were strongly associated with age and exposure. Antibody responses to DBLβ3PF11_0521 were associated with a 37% reduced risk of high-density clinical malaria in the follow-up period (adjusted incidence risk ratio [aIRR] = 0.63 [95% confidence interval {CI}, 0.45 to 0.88; P = 0.007]) and a 25% reduction in risk of low-density clinical malaria (aIRR = 0.75 [95% CI, 0.55 to 1.01; P = 0.06]), while there was no such association for other variants. Children who experienced severe malaria also had significantly lower levels of antibody to DBLβ3PF11_0521 and the other group A domains than those that experienced nonsevere malaria. Furthermore, a subset of PNG DBLβ sequences had ICAM1-binding motifs, formed a distinct phylogenetic cluster, and were similar to sequences from other areas of endemicity. PfEMP1 variants associated with these DBLβ domains were enriched for DC4 and DC13 head structures implicated in endothelial protein C receptor (EPCR) binding and severe malaria, suggesting conservation of dual binding specificities. These results provide further support for the development of specific classes of PfEMP1 as vaccine candidates and as biomarkers for protective immunity against clinical P. falciparum malaria.
    Matched MeSH terms: Protozoan Proteins/immunology*
  20. De Silva JR, Lau YL, Fong MY
    PLoS One, 2016;11(7):e0158998.
    PMID: 27391270 DOI: 10.1371/journal.pone.0158998
    Malaria remains a major health threat in many parts of the globe and causes high mortality and morbidity with 214 million cases of malaria occurring globally in 2015. Recent studies have outlined potential diagnostic markers and vaccine candidates one of which is the merozoite surface protein (MSP)-3. In this study, novel recombinant Plasmodium knowlesi MSP-3 was cloned, expressed and purified in an Escherichia coli system. Subsequently, the recombinant protein was evaluated for its sensitivity and specificity. The recombinant pkMSP-3 protein reacted with sera from patients with P. knowlesi infection in both Western blot (61%) and ELISA (100%). Specificity-wise, pkMSP-3 did not react with healthy donor sera in either assay and only reacted with a few non-malarial parasitic patient sera in the ELISA assay (3 of 49). In conclusion, sensitivity and specificity of pkMSP-3 was found to be high in the ELISA and Western Blot assay and thus utilising both assays in tandem would provide the best sero-diagnostic result for P. knowlesi infection.
    Matched MeSH terms: Protozoan Proteins/immunology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links