Displaying all 16 publications

Abstract:
Sort:
  1. Malik Z, Muhammad N, Kaleem M, Nayyar M, Qazi AS, Butt DQ, et al.
    ACS Appl Bio Mater, 2023 Feb 20;6(2):425-435.
    PMID: 36700919 DOI: 10.1021/acsabm.2c00644
    This study aims to synthesize and characterize lignin-decorated zinc oxide nanoparticles before incorporating them into resin-modified glass ionomer cement (RMGIC) to improve their anticariogenic potential and mechanical properties (shear bond strength and microhardness). Probe sonication was used to synthesize lignin-decorated zinc oxide nanoparticles which were then characterized via scanning electron microscopy, Fourier transform infrared spectroscopy, and X-ray diffraction. Following characterization, these were incorporated in RMGIC (Gold label, Fuji II LC). Three major groups, experimental group A (EGA), experimental group B (EGB), and control group (CG), were outlined. EGA and EGB were divided into numbered subgroups based on the ascending concentrations of nanoparticles (5, 10, and 15%) of lignin-coated zinc oxide and zinc-oxide, respectively. CG served as a control and comprised cured RMGIC samples without any incorporation. Anticariogenic analysis was conducted on experimental RMGIC samples via disk-diffusion (n = 3) and direct contact test (n = 3) against Streptococcus mutans (ATCC 25175). Optical density values for days 1, 3, and 5 were recorded via a UV-Vis spectrophotometer. A shear bond strength test was performed using 35 premolars. The adhesive remnant index was used to estimate the site of bond failure. For the Vickers microhardness test (n = 3), 100 g of load at 10 s dwell time was set. Atomic absorption spectroscopy was performed over 28 days to determine the release of zinc from the samples. All tests were analyzed statistically. The anticariogenic potential of EGA and EGB was significantly greater (p ≤ 0.05) than that of the control. The shear bond strength test reported the highest value for EGA15 with all groups exhibiting failure at the bracket/RMGIC interface. The microhardness of EGA15 yielded the highest value (p ≤ 0.05). Release kinetics displayed a steady release with EGB15 exhibiting the highest value. The EGA and EGB samples displayed good anticariogenic potential, which was sustained for 28 days without any deleterious effect on the shear bond strength and microhardness.
    Matched MeSH terms: Resin Cements/chemistry
  2. Omar H, Atta O, El-Mowafy O, Khan SA
    J Dent, 2010;38 Suppl 2:e95-9.
    PMID: 20493232 DOI: 10.1016/j.jdent.2010.05.006
    To determine the effect of thickness of porcelain veneers constructed from CAD-CAM on their final color when two resin cements were used.
    Matched MeSH terms: Resin Cements/chemistry
  3. Lui JL
    Dent Traumatol, 2001 Oct;17(5):227-30.
    PMID: 11678543
    The composite reinforcement technique has been used clinically to salvage damaged root-filled teeth compromised by caries, trauma, developmental abnormalities, internal resorption and iatrogenic causes. This clinical case report describes the use of the technique to reattach a fractured fragment in a compromised endodontically treated root besides reinforcing it for continued function in the mouth. Factors of clinical importance related to this additional application; including reattachment of tooth fragments, post crown retention, coronal microleakage and fracture resistance and strength, are also briefly discussed.
    Matched MeSH terms: Resin Cements/chemistry
  4. Caglar I, Ates SM, Boztoprak Y, Aslan YU, Duymus ZY
    Niger J Clin Pract, 2018 Aug;21(8):1000-1007.
    PMID: 30074001 DOI: 10.4103/njcp.njcp_300_17
    Objective: The aim of this study was to investigate the different surface treatments on the bond strength of self-adhesive resin cement to high-strength ceramic.

    Materials and Methods: Ninety aluminum oxide ceramic (Turkom-Ceramic Sdn. Bhd., Kuala Lumpur, Malaysia) specimens were produced and divided into nine groups to receive the following surface treatments: control group, no treatment (Group C), sandblasting (Group B), silica coating (Group S), erbium: yttrium-aluminum-garnet (Er:YAG) laser irradiation at 150 mJ 10 Hz (Group L1), Er:YAG laser irradiation at 300 mJ 10 Hz (Group L2), sandblasting + L1 (Group BL1), sandblasting + L2 (Group BL2), silica coating + L1 (Group SL1), and silica coating + L2 (Group SL2). After surface treatments, surface roughness (SR) values were measured and surface topography was evaluated. Resin cement was applied on the specimen surface, and shear bond strength (SBS) tests were performed. Data were statistically analyzed using one-way ANOVA and Tukey's multiple comparisons at a significance level of P < 0.05.

    Results: Group S, SL1, and SL2 showed significantly increased SR values compared to the control group (P < 0.05); therefore, no significant differences were found among the SR values of Groups B, BL1, BL2, L1, and L2 and the control group (P > 0.05). Group S showed the highest SBS values, whereas the control group showed the lowest SBS values.

    Conclusion: Silica coating is the most effective method for resin bonding of high strength ceramic, but Er:YAG laser application decreased the effectiveness.

    Matched MeSH terms: Resin Cements/chemistry*
  5. Aldossary MS, Abu Hajia SS, Santini A
    Int Orthod, 2018 12;16(4):638-651.
    PMID: 30385291 DOI: 10.1016/j.ortho.2018.09.005
    OBJECTIVE: To measure Total Light Energy (TLE) Transmission through six makes of ceramic orthodontic brackets alone and bracket-plus-adhesive samples, using the MARC™-Resin Calibrator (RC).

    METHODS: Six makes, three each monocrystalline (M) and polycrystalline (P) were used; PureSapphire (M), SPA Aesthetic (M), Ghost (M), Mist (P), Reflections (P), and Dual Ceramic (P). The Ortholux™ Light Curing Unit (LCU) was used to cure the orthodontic adhesive Transbond™XT. The LCU's tip irradiance was measured and TLE transmitted through the ceramic bracket was obtained, then adhesive added to the bracket, and transmitted TLE measured through bracket-plus-adhesive samples. The LCU was set at five seconds as recommended for curing adhesive through ceramic brackets.

    RESULTS: Mean tip irradiance was 1859.2±16.2mW/cm2. The TLE transmitted through brackets alone ranged 1.7 to 3.9J/cm2, in the descending order: Ghost>Pure Sapphire>Reflections>Mist>SPA Aesthetics>Dual Ceramic. The TLE transmitted through bracket-plus-adhesive samples ranged 1.6 to 3.7J/cm2, in the descending order: Ghost>Mist>Reflections>Pure Sapphire>SPA Aesthetics>Dual Ceramic. TLE was reduced with the addition of adhesive (range -0.1 to -0.7J/cm2). There was a significant difference for Pure Sapphire, Reflections, and Mist (P<0.05), but not for SPA Aesthetics, Ghost, and Dual Ceramic. There was no overall significant difference between the monocrystalline and polycrystalline makes. The two best makes were of the monocrystalline type, concerning TLE transmission, but with the exception of polycrystalline Dual Ceramic; the next worst make was a monocrystalline bracket, SPA Aesthetics.

    CONCLUSION: Light energy attenuation through ceramic orthodontic brackets is make-dependent, with no overall difference between monocrystalline and polycrystalline brackets. Light energy is further attenuated with the addition of resin-based orthodontic adhesive.

    Matched MeSH terms: Resin Cements/chemistry
  6. Razak AA, Abu-Hassan MI, Al-Makramani BM, Al-Sanabani FA, Al-Shami IZ, Almansour HM
    J Contemp Dent Pract, 2016 Nov 01;17(11):920-925.
    PMID: 27965501
    AIM: The aim of this study was to evaluate the effect of surface treatments on shear bond strength (SBS) of Turkom-Cera (Turkom-Ceramic (M) Sdn. Bhd., Puchong, Malaysia) all-ceramic material cemented with resin cement Panavia-F (Kuraray Medical Inc., Okayama, Japan).

    MATERIALS AND METHODS: Forty Turkom-Cera ceramic disks (10 mm × 3 mm) were prepared and randomly divided into four groups. The disks were wet ground to 1000-grit and subjected to four surface treatments: (1) No treatment (Control), (2) sandblasting, (3) silane application, and (4) sandblasting + silane. The four groups of 10 specimens each were bonded with Panavia-F resin cement according to manufacturer's recommendations. The SBS was determined using the universal testing machine (Instron) at 0.5 mm/min crosshead speed. Failure modes were recorded and a qualitative micromorphologic examination of different surface treatments was performed. The data were analyzed using the one-way analysis of variance (ANOVA) and Tukey honestly significant difference (HSD) tests.

    RESULTS: The SBS of the control, sandblasting, silane, and sandblasting + silane groups were: 10.8 ± 1.5, 16.4 ± 3.4, 16.2 ± 2.5, and 19.1 ± 2.4 MPa respectively. According to the Tukey HSD test, only the mean SBS of the control group was significantly different from the other three groups. There was no significant difference between sandblasting, silane, and sandblasting + silane groups.

    CONCLUSION: In this study, the three surface treatments used improved the bond strength of resin cement to Turkom-Cera disks.

    CLINICAL SIGNIFICANCE: The surface treatments used in this study appeared to be suitable methods for the cementation of glass infiltrated all-ceramic restorations.

    Matched MeSH terms: Resin Cements/chemistry
  7. Daood U, Fawzy A
    J Mech Behav Biomed Mater, 2023 Apr;140:105737.
    PMID: 36827934 DOI: 10.1016/j.jmbbm.2023.105737
    The aim is to evaluate the development of an experimental multi-mode/Universal resin-based dentin adhesive modified with synthetic Mg2+ doped hydroxyapatite crystals (HAp) having self-remineralization and antibiofilm properties. HAp doped with Mg2+ was prepared by the precipitation method. Experimental adhesives were subjected to degree of conversion and X-ray diffraction test for size and crystal structure. Bond strength was tested, and electron microscopy (SEM/TEM) imaging of resin-dentin interface was done along with nanoleakage, nanoindentation, confocal and Raman analyses. S. mutans was analysed using CLSM images against modified adhesive specimens. Nucleating abilities within the resin-dentin specimens are determined by measuring Ca2+. Alkaline phosphatase, Runx2, and Ocn transcripts are amplified using quantitative polymerase chain reaction (q-PCR). A calcium assay is performed to quantify level of mineralisation. When compared to control adhesives, the 0.5% Hap/Mg2+ containing experimental dentin adhesive demonstrated improved interaction with dentin. The preservation of uniform intact hybrid layer with the absence of nanoleakage indicated dentin bond integrity with 0.5% HAP/Mg2+ modified adhesive. Self-remineralization and antibiofilm potentials are supported.
    Matched MeSH terms: Resin Cements/chemistry
  8. Al-Maqtari AA, Lui JL
    J Prosthodont, 2010 Jul;19(5):347-56.
    PMID: 20456026 DOI: 10.1111/j.1532-849X.2010.00593.x
    The purpose of this in vitro study was to determine if packable resin composite with/without flowable resin composite has the ability to prevent coronal leakage in restored endodontic access openings following aging.
    Matched MeSH terms: Resin Cements/chemistry
  9. Purmal K, Sukumaran P
    Aust Orthod J, 2010 Nov;26(2):184-8.
    PMID: 21175030
    To investigate the shear bond strengths of buccal tubes and to determine the sites of failure.
    Matched MeSH terms: Resin Cements/chemistry
  10. Al-Makramani BMA, Razak AAA, Abu-Hassan MI
    J Prosthodont, 2008 Feb;17(2):120-124.
    PMID: 18047490 DOI: 10.1111/j.1532-849X.2007.00270.x
    PURPOSE: The current study investigated the effect of different luting agents on the fracture resistance of Procera AllCeram copings.

    METHODS: Six master dies were duplicated from the prepared maxillary first premolar tooth using nonprecious metal alloy (Wiron 99). Thirty copings (Procera AllCeram) of 0.6-mm thickness were manufactured. Three types of luting media were used: zinc phosphate cement (Elite), glass ionomer cement (Fuji I), and dual-cured composite resin cement (Panavia F). Ten copings were cemented with each type. Two master dies were used for each group, and each of them was used to lute five copings. All groups were cemented according to manufacturer's instructions and received a static load of 5 kg during cementation. After 24 hours of distilled water storage at 37 degrees C, the copings were vertically compressed using a universal testing machine at a crosshead speed of 1 mm/min.

    RESULTS: ANOVA revealed significant differences in the load at fracture among the three groups (p < 0.001). The fracture strength results showed that the mean fracture strength of zinc phosphate cement (Elite), glass ionomer cement (Fuji I), and resin luting cement (Panavia F) were 1091.9 N, 784.8 N, and 1953.5 N, respectively.

    CONCLUSION: Different luting agents have an influence on the fracture resistance of Procera AllCeram copings.

    Matched MeSH terms: Resin Cements/chemistry
  11. Mustafa AA, Matinlinna JP, Saidin S, Kadir MR
    J Prosthet Dent, 2014 Dec;112(6):1498-506.
    PMID: 24993375 DOI: 10.1016/j.prosdent.2014.05.011
    STATEMENT OF PROBLEM: The inconsistency of dentin bonding affects retention and microleakage.

    PURPOSE: The purpose of this laboratory and finite element analysis study was to investigate the effects on the formation of a hybrid layer of an experimental silane coupling agent containing primer solutions composed of different percentages of hydroxyethyl methacrylate.

    MATERIAL AND METHODS: A total of 125 sound human premolars were restored in vitro. Simple class I cavities were formed on each tooth, followed by the application of different compositions of experimental silane primers (0%, 5%, 25%, and 50% of hydroxyethyl methacrylate), bonding agents, and dental composite resins. Bond strength tests and scanning electron microscopy analyses were performed. The laboratory experimental results were validated with finite element analysis to determine the pattern of stress distribution. Simulations were conducted by placing the restorative composite resin in a premolar tooth by imitating simple class I cavities. The laboratory and finite element analysis data were significantly different from each other, as determined by 1-way ANOVA. A post hoc analysis was conducted on the bond strength data to further clarify the effects of silane primers.

    RESULTS: The strongest bond of hybrid layer (16.96 MPa) was found in the primer with 25% hydroxyethyl methacrylate, suggesting a barely visible hybrid layer barrier. The control specimens without the application of the primer and the primer specimens with no hydroxyethyl methacrylate exhibited the lowest strength values (8.30 MPa and 11.78 MPa) with intermittent and low visibility of the hybrid layer. These results were supported by finite element analysis that suggested an evenly distributed stress on the model with 25% hydroxyethyl methacrylate.

    CONCLUSIONS: Different compositions of experimental silane primers affected the formation of the hybrid layer and its resulting bond strength.

    Matched MeSH terms: Resin Cements/chemistry
  12. Elnafar AA, Alam MK, Hasan R
    J Orthod, 2014 Sep;41(3):201-7.
    PMID: 25143559 DOI: 10.1179/1465313314Y.0000000097
    The aim of this study was to assess the effects of four enamel preparation techniques on shear bond strength (SBS) of brackets bonded with a resin-modified glass ionomer cement (RMGIC). Adhesive Remnant Index (ARI) and enamel surface roughness (Ra) were also investigated after cement removal.
    Matched MeSH terms: Resin Cements/chemistry*
  13. Tapsir Z, Aly Ahmed HM, Luddin N, Husein A
    J Contemp Dent Pract, 2013 Jan 1;14(1):47-50.
    PMID: 23579892
    To evaluate and compare the microleakage of various restorative materials used as coronal barriers between endodontic appointments.
    Matched MeSH terms: Resin Cements/chemistry
  14. Baig MR, Gunaseelan R
    J Oral Implantol, 2012 Apr;38(2):149-53.
    PMID: 20932151 DOI: 10.1563/AAID-JOI-D-09-00089
    Passive fit of a long-span screw-retained implant prosthesis is an important criteria for the success of the restoration. This article describes a technique for fabricating a ceramometal implant fixed dental prosthesis (FDP) for a long-span partially edentulous situation by altering the conventional screw-retained design. The possibility of a passive fit is maximized by intraoral luting of the cast frame to milled abutments, and the potential framework distortion during fabrication is compensated to a major extent. Retrievability is ensured by screw retention of the prosthesis to the implants. Compared with conventional porcelain fused to metal screw-retained FDP, this prosthesis is relatively inexpensive to fabricate.
    Matched MeSH terms: Resin Cements/chemistry
  15. Baig MR, Rajan G
    J Oral Implantol, 2010;36(3):219-23.
    PMID: 20553176 DOI: 10.1563/AAID-JOI-D-09-00048
    Abstract This article describes the clinical and laboratory procedures involved in the fabrication of laboratory-processed, provisional, screw-retained, implant-supported maxillary and mandibular fixed complete dentures incorporating a cast metal reinforcement for immediate loading of implants. Precise fit is achieved by intraoral luting of the cast frame to milled abutments. Effective splinting of all implants is attained by the metal substructure and retrievability is provided by the screw-retention of the prosthesis.
    Matched MeSH terms: Resin Cements/chemistry
  16. Razak AA, Harrison A
    J Prosthet Dent, 1997 Apr;77(4):353-8.
    PMID: 9104710
    Dimensional accuracy of a composite inlay restoration is important to ensure an accurate fit and to minimize cementation stresses.
    Matched MeSH terms: Resin Cements/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links