Displaying all 6 publications

Abstract:
Sort:
  1. Wan Mohtar WH, ElShafie A
    ScientificWorldJournal, 2014;2014:683537.
    PMID: 25250384 DOI: 10.1155/2014/683537
    Shear-free turbulence generated from an oscillating grid in a water tank impinging on an impermeable surface at varying Reynolds number 74 ≤ Re(l) ≤ 570 was studied experimentally, where the Reynolds number is defined based on the root-mean-square (r.m.s) horizontal velocity and the integral length scale. A particular focus was paid to the turbulence characteristics for low Re(l) < 150 to investigate the minimum limit of Re l obeying the profiles of rapid distortion theory. The measurements taken at near base included the r.m.s turbulent velocities, evolution of isotropy, integral length scales, and energy spectra. Statistical analysis of the velocity data showed that the anisotropic turbulence structure follows the theory for flows with Re(l) ≥ 117. At low Re(l) < 117, however, the turbulence profile deviated from the prediction where no amplification of horizontal velocity components was observed and the vertical velocity components were seen to be constant towards the tank base. Both velocity components sharply decreased towards zero at a distance of ≈ 1/3 of the integral length scale above the base due to viscous damping. The lower limit where Re(l) obeys the standard profile was found to be within the range 114 ≤ Re(l) ≤ 116.
    Matched MeSH terms: Rheology/instrumentation
  2. Ibrahim S, Green RG, Dutton K, Abdul Rahim R
    ISA Trans, 2002 Jan;41(1):13-8.
    PMID: 12014798
    This paper describes a system using lensed optical fiber sensors that are arranged in the form of two orthogonal projections. The sensors are placed around a process vessel for upstream and downstream measurements. The purpose of the system is for on-line monitoring of particles and droplets being conveyed by a fluid. The lenses were constructed using a custom heating fixture. The fixture enables the lenses to be constructed with similar radii resulting in identical characteristics with minimum differences in transmitted intensity and emission angle. By collimating radiation from two halogen bulbs, radiation can be obtained by the sensors with radiation intensity related to the nature of the media. Each sensor interrogates a finite section of the measurement section. Each sensor provides a view. Parallel sensors provide a projection. Signal processing is carried out on the measured data in the time and frequency domains to investigate the latent information present in the flow signals.
    Matched MeSH terms: Rheology/instrumentation*
  3. Rozainee M, Ngo SP, Salema AA, Tan KG, Ariffin M, Zainura ZN
    Bioresour Technol, 2008 Mar;99(4):703-13.
    PMID: 17379511
    This study was focused on investigating the optimum fluidising velocity during the combustion of rice husk in a bench-scale fluidised bed combustor (ID 210mm) to obtain low carbon ash in the amorphous form. When all other parameters are held constant, the optimum fluidizing velocity aids in almost complete combustion, thereby releasing the entrapped carbon for further conversion. This results in ash with consistently low carbon content (less than 2wt%). The range of fluidising velocities investigated was from as low as 1.5U(mf) to as high as 8U(mf). It was found that the optimum fluidising velocity was approximately 3.3U(mf) as the mixing of rice husk with the bed was good with a high degree of penetration into the sand bed. The resulting ash retained its amorphous form with low residual carbon content (at 2.88wt%) and minimal sand contamination as shown by the X-ray diffraction analysis.
    Matched MeSH terms: Rheology/instrumentation*
  4. Abubakar Z, Salema AA, Ani FN
    Bioresour Technol, 2013 Jan;128:578-85.
    PMID: 23211483 DOI: 10.1016/j.biortech.2012.10.084
    A new technique to pyrolyse biomass in microwave (MW) system is presented in this paper to solve the problem of bio-oil deposition. Pyrolysis of oil palm shell (OPS) biomass was conducted in 800 W and 2.45 GHz frequency MW system using an activated carbon as a MW absorber. The temperature profile, product yield and the properties of the products were found to depend on the stirrer speed and MW absorber percentage. The highest bio-oil yield of 28 wt.% was obtained at 25% MW absorber and 50 rpm stirrer speed. Bio-char showed highest calorific value of the 29.5 MJ/kg at 50% MW absorber and 100 rpm stirrer speed. Bio-oil from this study was rich in phenol with highest detected as 85 area% from the GC-MS results. Thus, OPS bio-oil can become potential alternative to petroleum-based chemicals in various phenolic based applications.
    Matched MeSH terms: Rheology/instrumentation*
  5. Majid AM, Wong TW
    Int J Pharm, 2013 May 1;448(1):150-8.
    PMID: 23506957 DOI: 10.1016/j.ijpharm.2013.03.008
    The conventional powder flow testers require sample volumes larger than 40g and are met with experimental hiccups due to powder cohesion. This study designed a gas-pressurized dispersive powder flow tester where a high velocity air is used to disaggregate powder (9g) and eliminate its cohesion. The pressurized gas entrained solid particles leaving an orifice where the distance, surface area, width and weight of particle dispersion thereafter are determined as flow index. The flow indices of seven lactose grades with varying size, size distribution, shape, morphology, bulk and tapped densities characteristics were examined. They were compared against Hausner ratio and Carr's index parameters of the same powder mass. Both distance and surface area attributes of particle dispersion had significant negative correlations with Hausner ratio and Carr's index values of lactose. The distance, surface area and ease of particle dispersion varied proportionately with circular equivalent, surface weighted mean and volume weighted mean diameters of lactose, and inversely related to their specific surface area and elongation characteristics. Unlike insensitive Hausner ratio and Carr's index, an increase in elongation property of lactose particles was detectable through reduced powder weight loss from gas-pressurized dispersion as a result of susceptible particle blockage at orifice. The gas-pressurized dispersive tester is a useful alternative flowability measurement device for low volume and cohesive powder.
    Matched MeSH terms: Rheology/instrumentation*
  6. Tee HC, Lim PE, Seng CE, Nawi MA
    Bioresour Technol, 2012 Jan;104:235-42.
    PMID: 22130081 DOI: 10.1016/j.biortech.2011.11.032
    The objectives of this study are to compare the performance of newly developed baffled and conventional horizontal subsurface-flow (HSF) constructed wetlands in the removal of nitrogen at the hydraulic retention times (HRT) of 2, 3 and 5 days and to evaluate the potential of rice husk as wetland media for wastewater treatment. The results show that the planted baffled unit achieved 74%, 84% and 99% ammonia nitrogen (NH(4)(+)-N) removal versus 55%, 70% and 96% for the conventional unit at HRT of 2, 3 and 5 days, respectively. The better performance of the baffled unit was explained by the longer pathway due to the up-flow and down-flow conditions sequentially thus allowing more contact of the wastewater with the rhizomes and micro-aerobic zones. Near complete total oxidized nitrogen was observed due to the use of rice husk as wetland media which provided the COD as the electron donor in the denitrification process.
    Matched MeSH terms: Rheology/instrumentation
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links