METHODS: In this review, a total of 35 articles were selected using the Scopus database based on the inclusion and exclusion criteria RESULT: The significant correlation between total phenolic content, total flavonoid content, antioxidant activities, and sun protection factor were shown in these studies which confirmed the potential benefits of natural plants in sunscreen development.
CONCLUSIONS: In addition, natural botanical sources also exhibit excellent anti-tyrosinase, anti-aging, and anti-inflammatory activities. However, the biological activities of plants were dependent on the solvents used for extraction.
HIGHLIGHTS: • Intrabeam x-ray source and spherical applicators were simulated and skin dose was calculated. • Skin dose for constant skin to applicator distance strongly depends on applicator size. • Use of larger applicators generally results in higher skin dose. • The recommended 0.5-1 cm skin to applicator distance does not guarantee skin safety.
METHODS: Hydrophilic pectin-sulphanilamide films, with or without oleic acid (OA), were subjected to drug release and skin permeation studies. The skins were untreated or microwave-treated, and characterized by infrared spectroscopy, Raman spectroscopy, thermal, electron microscopy and histology techniques.
RESULTS: Skin treatment by microwave at 2450 MHz for 5 min promoted drug permeation from OA-free film without incurring skin damage. Skin treatment by microwave followed by film loaded with drug and OA resulted in permeation of all drug molecules that were released from film. Microwave exerted spacing of lipid architecture of stratum corneum into structureless domains which was unattainable by OA. It allowed OA to permeate stratum corneum and accumulate in dermis at a greater ease, and synergistically inducing lipid/keratin fluidization at hydrophobic C-H and hydrophilic O-H, N-H, C-O, C=O, C-N regimes of skin, and promoting drug permeation.
CONCLUSION: The microwave technology is evidently feasible for use in promotion of drug permeation across the skin barrier. It represents a new approach in transdermal drug delivery.