Displaying all 8 publications

Abstract:
Sort:
  1. Sahathevan R, Linden T, Villemagne VL, Churilov L, Ly JV, Rowe C, et al.
    Stroke, 2016 Jan;47(1):113-9.
    PMID: 26578658 DOI: 10.1161/STROKEAHA.115.010528
    Cardiovascular risk factors significantly increase the risk of developing Alzheimer disease. A possible mechanism may be via ischemic infarction-driving amyloid deposition. We conducted a study to determine the presence of β-amyloid in infarct, peri-infarct, and hemispheric areas after stroke. We hypothesized that an infarct would trigger β-amyloid deposition, with deposition over time.
    Matched MeSH terms: Stroke/metabolism*
  2. Mokhtarudin MJ, Payne SJ
    PMID: 26991256 DOI: 10.1002/cnm.2784
    Brain oedema is thought to form and to clear through the use of water-protein channels, aquaporin-4 (AQP4), which are found in the astrocyte endfeet. The model developed here is used to study the function of AQP4 in the formation and elimination of oedema fluid in ischaemia-reperfusion injury. The cerebral space is assumed to be made of four fluid compartments: astrocyte, neuron, ECS and blood microvessels, and a solid matrix for the tissue, and this is modelled using multiple-network poroelastic theory. AQP4 allows the movement of water between astrocyte and the ECS and the microvessels. It is found that the presence of AQP4 may help in reducing vasogenic oedema shown by a decrease in brain tissue extracellular pressure. However, the astrocyte pressure will increase to compensate for this decrease, which may lead to cytotoxic oedema. In addition, the swelling will also depend on the ionic concentrations in the astrocyte and extracellular space, which may change after ischaemic stroke. Understanding the role of AQP4 in oedema may thus help the development of a treatment plan in reducing brain swelling after ischaemia-reperfusion.
    Matched MeSH terms: Stroke/metabolism
  3. Wei LK, Quan LS
    Comput Biol Chem, 2019 Dec;83:107116.
    PMID: 31561071 DOI: 10.1016/j.compbiolchem.2019.107116
    According to the Trial of Org 10172 in Acute Stroke Treatment, ischemic stroke is classified into five subtypes. However, the predictive biomarkers of ischemic stroke subtypes are still largely unknown. The utmost objective of this study is to map, construct and analyze protein-protein interaction (PPI) networks for all subtypes of ischemic stroke, and to suggest the predominant biological pathways for each subtypes. Through 6285 protein data retrieved from PolySearch2 and STRING database, the first PPI networks for all subtypes of ischemic stroke were constructed. Notably, F2 and PLG were identified as the critical proteins for large artery atherosclerosis (LAA), lacunar, cardioembolic, stroke of other determined etiology (SOE) and stroke of undetermined etiology (SUE). Gene ontology and DAVID analysis revealed that GO:0030193 regulation of blood coagulation and GO:0051917 regulation of fibrinolysis were the important functional clusters for all the subtypes. In addition, inflammatory pathway was the key etiology for LAA and lacunar, while FOS and JAK2/STAT3 signaling pathways might contribute to cardioembolic stroke. Due to many risk factors associated with SOE and SUE, the precise etiology for these two subtypes remained to be concluded.
    Matched MeSH terms: Stroke/metabolism
  4. Halim AG, Hamidon BB, Cheong SK, Raymond AA
    Singapore Med J, 2006 May;47(5):400-3.
    PMID: 16645690
    There is no biological marker that can accurately predict the prognosis after an acute ischaemic stroke. The main objective of this study was to evaluate the prognostic value of tissue factor (thromboplastin) levels in first ischaemic stroke.
    Matched MeSH terms: Stroke/metabolism
  5. Prakash A, Bharti K, Majeed AB
    Fundam Clin Pharmacol, 2015 Apr;29(2):131-49.
    PMID: 25659970 DOI: 10.1111/fcp.12110
    Zinc is the authoritative metal which is present in our body, and reactive zinc metal is crucial for neuronal signaling and is largely distributed within presynaptic vesicles. Zinc also plays an important role in synaptic function. At cellular level, zinc is a modulator of synaptic activity and neuronal plasticity in both development and adulthood. Different importers and transporters are involved in zinc homeostasis. ZnT-3 is a main transporter involved in zinc homeostasis in the brain. It has been found that alterations in brain zinc status have been implicated in a wide range of neurological disorders including impaired brain development and many neurodegenerative disorders such as Alzheimer's disease, and mood disorders including depression, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and prion disease. Furthermore, zinc has also been implicated in neuronal damage associated with traumatic brain injury, stroke, and seizure. Understanding the mechanisms that control brain zinc homeostasis is thus critical to the development of preventive and treatment strategies for these and other neurological disorders.
    Matched MeSH terms: Stroke/metabolism
  6. Tan KS, Armugam A, Sepramaniam S, Lim KY, Setyowati KD, Wang CW, et al.
    PLoS One, 2009;4(11):e7689.
    PMID: 19888324 DOI: 10.1371/journal.pone.0007689
    The methods currently available for diagnosis and prognosis of cerebral ischaemia still require further improvements. Micro-RNAs (small non-coding RNAs) have been recently reported as useful biomarkers in diseases such as cancer and diabetes. We therefore carried out microRNA (miRNA) profiling from peripheral blood to detect and identify characteristic patterns in ischaemic stroke.
    Matched MeSH terms: Stroke/metabolism*
  7. Sanchez-Bezanilla S, Åberg ND, Crock P, Walker FR, Nilsson M, Isgaard J, et al.
    Int J Mol Sci, 2020 Jun 26;21(12).
    PMID: 32604953 DOI: 10.3390/ijms21124563
    Cognitive impairment is common after stroke, and disturbances in hippocampal function are often involved, even in remote non-hippocampal injuries. In terms of hippocampal function, growth hormone (GH) is known to affects plasticity and cognition. We aimed to investigate whether GH treatment after an experimental cortical stroke could enhance remote hippocampal plasticity and the hippocampal-dependent visual discrimination task. C57BL6 male mice were subjected to cortical photothrombotic stroke. Stroke mice were then treated with either saline or GH at 48 h after occlusion for 28 days. We assessed learning and memory using mouse touchscreen platform for the visual discrimination task. We also evaluated markers of neural progenitor cells, synaptic plasticity and cerebrovascular remodelling in the hippocampal formation. GH treatment significantly improved the performance on visual discrimination task after stroke. We observed a concomitant increased number of bromodeoxyuridine-positive cells in the dentate gyrus of the hippocampus. We also detected increased protein levels and density of doublecortin, a neuronal precursor cells marker, as well as glutamate receptor 1 (GLuR1), a synaptic marker. These findings provide further neurobiological evidence for how GH treatment could be used to promote hippocampal plasticity in a remote region from the initial cortical injury, and thus enhance cognitive recovery after stroke.
    Matched MeSH terms: Stroke/metabolism
  8. Wei LK, Sutherland H, Au A, Camilleri E, Haupt LM, Gan SH, et al.
    Biomed Res Int, 2015;2015:167976.
    PMID: 25705649 DOI: 10.1155/2015/167976
    Stroke is a multifactorial disease that may be associated with aberrant DNA methylation profiles. We investigated epigenetic dysregulation for the methylenetetrahydrofolate reductase (MTHFR) gene among ischemic stroke patients. Cases and controls were recruited after obtaining signed written informed consents following a screening process against the inclusion/exclusion criteria. Serum vitamin profiles (folate, vitamin B12, and homocysteine) were determined using immunoassays. Methylation profiles for CpGs A and B in the MTHFR gene were determined using a bisulfite-pyrosequencing method. Methylation of MTHFR significantly increased the susceptibility risk for ischemic stroke. In particular, CpG A outperformed CpG B in mediating serum folate and vitamin B12 levels to increase ischemic stroke susceptibility risks by 4.73-fold. However, both CpGs A and B were not associated with serum homocysteine levels or ischemic stroke severity. CpG A is a potential epigenetic marker in mediating serum folate and vitamin B12 to contribute to ischemic stroke.
    Matched MeSH terms: Stroke/metabolism
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links