Displaying all 14 publications

Abstract:
Sort:
  1. Reginald K, Chan Y, Plebanski M, Poh CL
    Curr Pharm Des, 2018;24(11):1157-1173.
    PMID: 28914200 DOI: 10.2174/1381612823666170913163904
    Dengue is one of the most important arboviral infections worldwide, infecting up to 390 million people and causing 25,000 deaths annually. Although a licensed dengue vaccine is available, it is not efficacious against dengue serotypes that infect people living in South East Asia, where dengue is an endemic disease. Hence, there is an urgent need to develop an efficient dengue vaccine for this region. Data from different clinical trials indicate that a successful dengue vaccine must elicit both neutralizing antibodies and cell mediated immunity. This can be achieved by designing a multi-epitope peptide vaccine comprising B, CD8+ and CD4+ T cell epitopes. As recognition of T cell epitopes are restricted by human leukocyte antigens (HLA), T cell epitopes which are able to recognize several major HLAs will be preferentially included in the vaccine design. While peptide vaccines are safe, biocompatible and cost-effective, it is poorly immunogenic. Strategies to improve its immunogenicity by the use of long peptides, adjuvants and nanoparticle delivery mechanisms are discussed.
    Matched MeSH terms: Vaccines, Subunit/immunology*
  2. Azmi F, Ahmad Fuaad AA, Skwarczynski M, Toth I
    Hum Vaccin Immunother, 2014;10(3):778-96.
    PMID: 24300669
    Peptide-based subunit vaccines are of great interest in modern immunotherapy as they are safe, easy to produce and well defined. However, peptide antigens produce a relatively weak immune response, and thus require the use of immunostimulants (adjuvants) for optimal efficacy. Developing a safe and effective adjuvant remains a challenge for peptide-based vaccine design. Recent advances in immunology have allowed researchers to have a better understanding of the immunological implication of related diseases, which facilitates more rational design of adjuvant systems. Understanding the molecular structure of the adjuvants allows the establishment of their structure-activity relationships which is useful for the development of next-generation adjuvants. This review summarizes the current state of adjuvants development in the field of synthetic peptide-based vaccines. The structural, chemical and biological properties of adjuvants associated with their immunomodulatory effects are discussed.
    Matched MeSH terms: Vaccines, Subunit/immunology*
  3. Lim HX, Lim J, Jazayeri SD, Poppema S, Poh CL
    Biomed J, 2021 03;44(1):18-30.
    PMID: 33727051 DOI: 10.1016/j.bj.2020.09.005
    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a pandemic involving so far more than 22 million infections and 776,157 deaths. Effective vaccines are urgently needed to prevent SARS-CoV-2 infections. No vaccines have yet been approved for licensure by regulatory agencies. Even though host immune responses to SARS-CoV-2 infections are beginning to be unravelled, effective clearance of virus will depend on both humoral and cellular immunity. Additionally, the presence of Spike (S)-glycoprotein reactive CD4+ T-cells in the majority of convalescent patients is consistent with its significant role in stimulating B and CD8+ T-cells. The search for immunodominant epitopes relies on experimental evaluation of peptides representing the epitopes from overlapping peptide libraries which can be costly and labor-intensive. Recent advancements in B- and T-cell epitope predictions by bioinformatic analysis have led to epitope identifications. Assessing which peptide epitope can induce potent neutralizing antibodies and robust T-cell responses is a prerequisite for the selection of effective epitopes to be incorporated in peptide-based vaccines. This review discusses the roles of B- and T-cells in SARS-CoV-2 infections and experimental validations for the selection of B-, CD4+ and CD8+ T-cell epitopes which could lead to the construction of a multi-epitope peptide vaccine. Peptide-based vaccines are known for their low immunogenicity which could be overcome by incorporating immunostimulatory adjuvants and nanoparticles such as Poly Lactic-co-Glycolic Acid (PLGA) or chitosan.
    Matched MeSH terms: Vaccines, Subunit/immunology
  4. Hoo WPY, Siak PY, In LLA
    Methods Mol Biol, 2020;2131:213-228.
    PMID: 32162256 DOI: 10.1007/978-1-0716-0389-5_10
    Discovery of tumor antigenic epitopes is important for cancer vaccine development. Such epitopes can be designed and modified to become more antigenic and immunogenic in order to overcome immunosuppression towards the native tumor antigen. In silico-guided modification of epitope sequences allows predictive discrimination of those that may be potentially immunogenic. Therefore, only candidates predicted with high antigenicity will be selected, constructed, and tested in the lab. Here, we described the employment of in silico tools using a multiparametric approach to assess both potential T-cell epitopes (MHC class I/II binding) and B-cell epitopes (hydrophilicity, surface accessibility, antigenicity, and linear epitope). A scoring and ranking system based on these parameters was developed to shortlist potential mimotope candidates for further development as peptide cancer vaccines.
    Matched MeSH terms: Vaccines, Subunit/immunology
  5. Anasir MI, Poh CL
    Int J Mol Sci, 2019 Mar 13;20(6).
    PMID: 30871133 DOI: 10.3390/ijms20061256
    Hand, foot, and mouth disease (HFMD) commonly produces herpangina, but fatal neurological complications have been observed in children. Enterovirus 71 (EV-A71) and Coxsackievirus 16 (CV-A16) are the predominant viruses causing HFMD worldwide. With rising concern about HFMD outbreaks, there is a need for an effective vaccine against EV-A71 and CV-A16. Although an inactivated vaccine has been developed against EV-A71 in China, the inability of the inactivated vaccine to confer protection against CV-A16 infection and other HFMD etiological agents, such as CV-A6 and CV-A10, necessitates the exploration of other vaccine platforms. Thus, the antigenic peptide-based vaccines are promising platforms to develop safe and efficacious multivalent vaccines, while the monoclonal antibodies are viable therapeutic and prophylactic agents against HFMD etiological agents. This article reviews the available information related to the antigenic peptides of the etiological agents of HFMD and their neutralizing antibodies that can provide a basis for the design of future therapies against HFMD etiological agents.
    Matched MeSH terms: Vaccines, Subunit/immunology*
  6. Hojsak I, Avitzur Y, Mor E, Shamir R, Haimi-Cohen Y, Zakay-Rones Z, et al.
    Pediatr Infect Dis J, 2011 Jun;30(6):491-4.
    PMID: 21248658 DOI: 10.1097/INF.0b013e31820b7c22
    Data on the immunogenicity of the influenza vaccine in children after liver transplantation are sparse. Our study aims to evaluate the response of such patients to the trivalent influenza vaccine, administered by different protocols in 2 influenza seasons.
    Matched MeSH terms: Vaccines, Subunit/immunology
  7. AlMatar M, Makky EA, AlMandeal H, Eker E, Kayar B, Var I, et al.
    Curr Mol Pharmacol, 2019;12(2):83-104.
    PMID: 30474542 DOI: 10.2174/1874467212666181126151948
    BACKGROUND: Mycobacterium tuberculosis (Mtb) is considered as one of the most efficacious human pathogens. The global mortality rate of TB stands at approximately 2 million, while about 8 to 10 million active new cases are documented yearly. It is, therefore, a priority to develop vaccines that will prevent active TB. The vaccines currently used for the management of TB can only proffer a certain level of protection against meningitis, TB, and other forms of disseminated TB in children; however, their effectiveness against pulmonary TB varies and cannot provide life-long protective immunity. Based on these reasons, more efforts are channeled towards the development of new TB vaccines. During the development of TB vaccines, a major challenge has always been the lack of diversity in both the antigens contained in TB vaccines and the immune responses of the TB sufferers. Current efforts are channeled on widening both the range of antigens selection and the range of immune response elicited by the vaccines. The past two decades witnessed a significant progress in the development of TB vaccines; some of the discovered TB vaccines have recently even completed the third phase (phase III) of a clinical trial.

    OBJECTIVE: The objectives of this article are to discuss the recent progress in the development of new vaccines against TB; to provide an insight on the mechanism of vaccine-mediated specific immune response stimulation, and to debate on the interaction between vaccines and global interventions to end TB.

    Matched MeSH terms: Vaccines, Subunit/immunology
  8. Khalaj-Hedayati A, Chua CLL, Smooker P, Lee KW
    Influenza Other Respir Viruses, 2020 Jan;14(1):92-101.
    PMID: 31774251 DOI: 10.1111/irv.12697
    The threat of novel influenza infections has sparked research efforts to develop subunit vaccines that can induce a more broadly protective immunity by targeting selected regions of the virus. In general, subunit vaccines are safer but may be less immunogenic than whole cell inactivated or live attenuated vaccines. Hence, novel adjuvants that boost immunogenicity are increasingly needed as we move toward the era of modern vaccines. In addition, targeting, delivery, and display of the selected antigens on the surface of professional antigen-presenting cells are also important in vaccine design and development. The use of nanosized particles can be one of the strategies to enhance immunogenicity as they can be efficiently recognized by antigen-presenting cells. They can act as both immunopotentiators and delivery system for the selected antigens. This review will discuss on the applications, advantages, limitations, and types of nanoparticles (NPs) used in the preparation of influenza subunit vaccine candidates to enhance humoral and cellular immune responses.
    Matched MeSH terms: Vaccines, Subunit/immunology*
  9. Camilloni B, Neri M, Lepri E, Iorio AM
    Vaccine, 2009 Jun 24;27(31):4099-103.
    PMID: 19410623 DOI: 10.1016/j.vaccine.2009.04.078
    This study evaluated whether MF59-adjuvanted subunit trivalent influenza vaccine for the 2003/04 winter season (A/Moscow/10/99, H3N2; A/New Caledonia/20/99, H1N1; B/Hong Kong/330/01) would confer protection against mismatched and frequently co-circulating variants of influenza B/Victoria- and B/Yamagata-like virus strains. Haemagglutination inhibiting (HI) antibodies were measured in middle-aged and elderly volunteers against the homologous B/Victoria-like vaccine strain (B/Hong Kong/330/01) and against mismatched B/Victoria-like (B/Malaysia/2506/04) and B/Yamagata-like (B/Singapore/379/99 and B/Shanghai/361/02) strains. Immunization induced significant increases in the amounts of HI antibodies against all influenza B strains under investigation. However, the responses against the heterologous B/Shanghai/361/02 virus did not reach the desirable values of seroprotection. An age-dependent decline of the responses was found for B/Victoria-like antigens, but not for B/Yamagata-like strains. Although further studies are needed, our data support the recommendation of including influenza B viruses of the B/Victoria and B/Yamagata lineages in the future influenza vaccine preparations.
    Matched MeSH terms: Vaccines, Subunit/immunology
  10. Chai SJ, Fong SCY, Gan CP, Pua KC, Lim PVH, Lau SH, et al.
    Hum Vaccin Immunother, 2019;15(1):167-178.
    PMID: 30193086 DOI: 10.1080/21645515.2018.1520584
    Peptide vaccines derived from tumour-associated antigens have been used as an immunotherapeutic approach to induce specific cytotoxic immune response against tumour. We previously identified that MAGED4B and FJX1 proteins are overexpressed in HNSCC patients; and further demonstrated that two HLA-A2-restricted 9-11 amino acid peptides derived from these proteins were able to induce anti-tumour immune responses in vitro independently using PBMCs isolated from these patients. In this study, we evaluated the immunogenicity and efficacy of a dual-antigenic peptide vaccine (PV1), comprised of MAGED4B and FJX1 peptides in HNSCC patients. We first demonstrated that 94.8% of HNSCC patients expressed MAGED4B and/or FJX1 by immunohistochemistry, suggesting that PV1 could benefit the majority of HNSCC patients. The presence of pre-existing MAGED4B and FJX1-specific T-cells was detected using a HLA-A2 dimer assay and efficacy of PV1 to induce T-cell to secrete cytotoxic cytokine was evaluated using ELISPOT assay. Pre-existing PV1-specific T-cells were detected in all patients. Notably, we demonstrated that patients' T-cells were able to secrete cytotoxic cytokines upon exposure to target cells expressing the respective antigen post PV1 stimulation. Furthermore, patients with high expression of MAGED4B and FJX1 in their tumours were more responsive to PV1 stimulation, demonstrating the specificity of the PV1 peptide vaccine. Additionally, we also demonstrated the expression of MAGED4B and FJX1 in breast, lung, colon, prostate and rectal cancer suggesting the potential use of PV1 in these cancers. In summary, PV1 could be a good vaccine candidate for the treatment of HNSCC patients and other cancers expressing these antigens.
    Matched MeSH terms: Vaccines, Subunit/immunology*
  11. Souza AR, Braga JA, de Paiva TM, Loggetto SR, Azevedo RS, Weckx LY
    Vaccine, 2010 Jan 22;28(4):1117-20.
    PMID: 20116631 DOI: 10.1016/j.vaccine.2009.05.046
    The immunogenicity and tolerability of virosome and of split influenza vaccines in patients with sickle cell anemia (SS) were evaluated. Ninety SS patients from 8 to 34 years old were randomly assigned to receive either virosome (n=43) or split vaccine (n=47). Two blood samples were collected, one before and one 4-6 weeks after vaccination. Antibodies against viral strains (2006) A/New Caledonia (H1N1), A/California (H3N2), B/Malaysia were determined using the hemagglutinin inhibition test. Post-vaccine reactions were recorded over 7 days. Seroconversion rates for H1N1, H3N2 and B were 65.1%, 60.4% and 83.7% for virosome vaccine, and 68.0%, 61.7% and 68.0% for split vaccine. Seroprotection rates for H1N1, H3N2 e B were 100%, 97.6% and 69.7% for virosome, and 97.8%, 97.8% and 76.6% for split vaccine. No severe adverse reactions were recorded. Virosome and split vaccines in patients with sickle cell anemia were equally immunogenic, with high seroconversion and seroprotection rates. Both vaccines were well tolerated.
    Matched MeSH terms: Vaccines, Subunit/immunology
  12. Khalaj-Hedayati A
    J Immunol Res, 2020;2020:7201752.
    PMID: 32695833 DOI: 10.1155/2020/7201752
    The recent outbreak of the novel coronavirus disease, COVID-19, has highlighted the threat that highly pathogenic coronaviruses have on global health security and the imminent need to design an effective vaccine for prevention purposes. Although several attempts have been made to develop vaccines against human coronavirus infections since the emergence of Severe Acute Respiratory Syndrome coronavirus (SARS-CoV) in 2003, there is no available licensed vaccine yet. A better understanding of previous coronavirus vaccine studies may help to design a vaccine for the newly emerged virus, SARS-CoV-2, that may also cover other pathogenic coronaviruses as a potentially universal vaccine. In general, coronavirus spike protein is the major antigen for the vaccine design as it can induce neutralizing antibodies and protective immunity. By considering the high genetic similarity between SARS-CoV and SARS-CoV-2, here, protective immunity against SARS-CoV spike subunit vaccine candidates in animal models has been reviewed to gain advances that can facilitate coronavirus vaccine development in the near future.
    Matched MeSH terms: Vaccines, Subunit/immunology
  13. Tan HY, Nagoor NH, Sekaran SD
    Trop Biomed, 2010 Dec;27(3):430-41.
    PMID: 21399583 MyJurnal
    The major outer membrane protein (OmpH) of 4 local Malaysian strains of Pasteurella multocida serotype B:2 were characterized in comparison to ATCC strains. Three major peptide bands of MW 26, 32 and 37 kDa were characterized using SDSPAGE. Two of these fragments, the 32 kDa and 37 kDa were observed to be more reactive with a mouse polyclonal antiserum in all of the local isolates as well as the ATCC strains in a Western blot. However, the 32 kDa fragment was found to cross react with other Gram negative bacteria. Therefore, the 37 kDa OmpH was selected as vaccine candidate. The 37 kDa ompH gene of the isolated strain 1710 was cloned into an Escherichia coli expression vector to produce large amounts of recombinant OmpH (rOmpH). The 37 kDa ompH gene of strain 1710 was sequenced. In comparison to a reference strain X-73 of the ompH of P. multocida, 39bp was found deleted in the 37 kDa ompH gene. However, the deletion did not shift the reading frame or change the amino acid sequence. The rOmpH was used in a mice protection study. Mice immunized and challenged intraperitoneally resulted 100% protection against P. multocida whilst mice immunized subcutaneously and challenged intraperitoneally only resulted 80% protection. The rOmpH is therefore a suitable candidate for vaccination field studies. The same rOmpH was also used to develop a potential diagnostic kit in an ELISA format.
    Matched MeSH terms: Vaccines, Subunit/immunology
  14. Pua TL, Chan XY, Loh HS, Omar AR, Yusibov V, Musiychuk K, et al.
    Hum Vaccin Immunother, 2017 Feb;13(2):306-313.
    PMID: 27929750 DOI: 10.1080/21645515.2017.1264783
    Highly pathogenic avian influenza (HPAI) H5N1 is an ongoing global health concern due to its severe sporadic outbreaks in Asia, Africa and Europe, which poses a potential pandemic threat. The development of safe and cost-effective vaccine candidates for HPAI is considered the best strategy for managing the disease and addressing the pandemic preparedness. The most potential vaccine candidate is the antigenic determinant of influenza A virus, hemagglutinin (HA). The present research was aimed at developing optimized expression in Nicotiana benthamiana and protein purification process for HA from the Malaysian isolate of H5N1 as a vaccine antigen for HPAI H5N1. Expression of HA from the Malaysian isolate of HPAI in N. benthamiana was confirmed, and more soluble protein was expressed as truncated HA, the HA1 domain over the entire ectodomain of HA. Two different purification processes were evaluated for efficiency in terms of purity and yield. Due to the reduced yield, protein degradation and length of the 3-column purification process, the 2-column method was chosen for target purification. Purified HA1 was found immunogenic in mice inducing H5 HA-specific IgG and a hemagglutination inhibition antibody. This paper offers an alternative production system of a vaccine candidate against a locally circulating HPAI, which has a regional significance.
    Matched MeSH terms: Vaccines, Subunit/immunology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links