Displaying all 18 publications

Abstract:
Sort:
  1. Le TT, Lim V, Ibrahim R, Teo MT, Bryant J, Ang B, et al.
    Eur Heart J Cardiovasc Imaging, 2021 05 10;22(6):670-679.
    PMID: 32255186 DOI: 10.1093/ehjci/jeaa040
    AIMS: Hypertensive left ventricular hypertrophy (LVH) is associated with increased cardiovascular events. We previously developed the remodelling index (RI) that incorporated left ventricular (LV) volume and wall-thickness in a single measure of advanced hypertrophy in hypertensive patients. This study examined the prognostic potential of the RI in reference to contemporary LVH classifications.

    METHODS AND RESULTS: Cardiovascular magnetic resonance was performed in 400 asymptomatic hypertensive patients. The newly derived RI (EDV3t, where EDV is LV end-diastolic volume and t is the maximal wall thickness across 16 myocardial segments) stratified hypertensive patients: no LVH, LVH with normal RI (LVHNormal-RI), and LVH with low RI (LVHLow-RI). The primary outcome was a composite of all-cause mortality, acute coronary syndromes, strokes, and decompensated heart failure. LVHLow-RI was associated with increased LV mass index, fibrosis burden, impaired myocardial function and elevated biochemical markers of myocardial injury (high-sensitive cardiac troponin I), and wall stress. Over 18.3 ± 7.0 months (601.3 patient-years), 14 adverse events occurred (2.2 events/100 patient-years). Patients with LVHLow-RI had more than a five-fold increase in adverse events compared to those with LVHNormal-RI (11.6 events/100 patient-years vs. 2.0 events/100 patient-years, respectively; log-rank P 

    Matched MeSH terms: Ventricular Remodeling
  2. Petyunina O, Kopytsya M, Kobets A, Berezin A
    Turk Kardiyol Dern Ars, 2023 Mar;51(2):119-128.
    PMID: 36916808 DOI: 10.5543/tkda.2022.31531
    OBJECTIVE: The aim of the study was to investigate whether increased left ventricular mechanical dispersion is an early predictor for adverse cardiac remodeling in ST-segment elevation myocardial infarction patients who had post-percutaneous coronary intervention thrombolysis in myocardial infarction (TIMI) flow grade > 2.

    METHODS: A total of 119 post-percutaneous coronary intervention ST elevation myocardial infarction patients with TIMI flow grade >2 were prospectively included in the study. Left ventricular global longitudinal strain was quantified by 2-dimensional speckletracking echocardiography, and left ventricular mechanical dispersion was determined at baseline and after 1 year to assess adverse cardiac remodeling. The levels of circulating biomarkers were measured at the baseline. TIMI score and the Global Registry of Acute Coronary Events score systems were used to evaluate the prognosis of patients.

    RESULTS: Patients with high quartile versus low quartile of left ventricular mechanical dispersion exerted higher Global Registry of Acute Coronary Events and TIMI score grades, left ventricular endsystolic volume, global longitudinal strain, and levels of the N-terminal fragment of brain natriuretic peptide and lower left ventricular ejection fraction. Multivariate log regression showed that N-terminal fragment of brain natriuretic peptide > 953 pg/mL, global longitudinal strain > -8%, and high quartile of left ventricular mechanical dispersion remained independent predictors for adverse cardiac remodeling. Addition of left ventricular mechanical dispersion to the N-terminal fragment of brain natriuretic peptide improved the discriminative potency of the whole model.

    CONCLUSION: Measurement of left ventricular mechanical dispersion might be useful in determining the risk of adverse cardiac remodeling in post-percutaneous coronary intervention ST elevation myocardial infarction patients.

    Matched MeSH terms: Ventricular Remodeling*
  3. Mohamed A, Marciniak M, Williamson W, Huckstep OJ, Lapidaire W, McCance A, et al.
    JAMA Cardiol, 2021 07 01;6(7):821-829.
    PMID: 33978675 DOI: 10.1001/jamacardio.2021.0961
    Importance: Preterm-born individuals have higher blood pressure with an increased risk of hypertension by young adulthood, as well as potentially adverse cardiac remodeling even when normotensive. To what extent blood pressure elevation affects left ventricular (LV) structure and function in adults born preterm is currently unknown.

    Objective: To investigate whether changes observed in LV structure and function in preterm-born adults make them more susceptible to cardiac remodeling in association with blood pressure elevation.

    Design, Setting, and Participants: This cross-sectional cohort study, conducted at the Oxford Cardiovascular Clinical Research Facility and Oxford Centre for Clinical Magnetic Resonance Research, included 468 adults aged 18 to 40 years. Of these, 200 were born preterm (<37 weeks' gestation) and 268 were born at term (≥37 weeks' gestation). Cardiac magnetic resonance imaging was used to characterize LV structure and function, with clinical blood pressure readings measured to assess hypertension status. Demographic and anthropometric data, as well as birth history and family medical history information, were collected. Data were analyzed between January 2012 and February 2021.

    Main Outcomes and Measures: Cardiac magnetic resonance measures of LV structure and function in response to systolic blood pressure elevation.

    Results: The cohort was primarily White (>95%) with a balanced sex distribution (51.5% women and 48.5% men). Preterm-born adults with and without hypertension had higher LV mass index, reduced LV function, and smaller LV volumes compared with term-born individuals both with and without hypertension. In regression analyses of systolic blood pressure with LV mass index and LV mass to end-diastolic volume ratio, there was a leftward shift in the slopes in preterm-born compared with term-born adults. Compared with term-born adults, there was a 2.5-fold greater LV mass index per 1-mm Hg elevation in systolic blood pressure in very and extremely preterm-born adults (<32 weeks' gestation) (0.394 g/m2 vs 0.157 g/m2 per 1 mm Hg; P 

    Matched MeSH terms: Ventricular Remodeling*
  4. Mohamed A, Leeson P, Lewandowski AJ
    J Physiol, 2018 12;596(23):5505-5506.
    PMID: 29660821 DOI: 10.1113/JP276067
    Matched MeSH terms: Ventricular Remodeling*
  5. Wan Ab Naim WN, Mokhtarudin MJM, Lim E, Chan BT, Ahmad Bakir A, Nik Mohamed NA
    Int J Numer Method Biomed Eng, 2020 11;36(11):e3398.
    PMID: 32857480 DOI: 10.1002/cnm.3398
    Myocardial infarction (MI) is the most common cause of a heart failure, which occurs due to myocardial ischemia leading to left ventricular (LV) remodeling. LV remodeling particularly occurs at the ischemic area and the region surrounds it, known as the border zone. The role of the border zone in initiating LV remodeling process urges the investigation on the correlation between early border zone changes and remodeling outcome. Thus, this study aims to simulate a preliminary conceptual work of the border zone formation and evolution during onset of MI and its effect towards early LV remodeling processes by incorporating the oxygen concentration effect on the electrophysiology of an idealized three-dimensional LV through electro-chemical coupled mathematical model. The simulation result shows that the region of border zone, represented by the distribution of electrical conductivities, keeps expanding over time. Based on this result, the border zone is also proposed to consist of three sub-regions, namely mildly, moderately, and seriously impaired conductivity regions, which each region categorized depending on its electrical conductivities. This division could be used as a biomarker for classification of reversible and irreversible myocardial injury and will help to identify the different risks for the survival of patient. Larger ischemic size and complete occlusion of the coronary artery can be associated with an increased risk of developing irreversible injury, in particular if the reperfusion treatment is delayed. Increased irreversible injury area can be related with cardiovascular events and will further deteriorate the LV function over time.
    Matched MeSH terms: Ventricular Remodeling
  6. Shimoda K, Nishimura A, Sunggip C, Ito T, Nishiyama K, Kato Y, et al.
    Sci Rep, 2020 08 18;10(1):13926.
    PMID: 32811872 DOI: 10.1038/s41598-020-70956-5
    Cardiac tissue remodeling caused by hemodynamic overload is a major clinical outcome of heart failure. Uridine-responsive purinergic P2Y6 receptor (P2Y6R) contributes to the progression of cardiovascular remodeling in rodents, but it is not known whether inhibition of P2Y6R prevents or promotes heart failure. We demonstrate that inhibition of P2Y6R promotes pressure overload-induced sudden death and heart failure in mice. In neonatal cardiomyocytes, knockdown of P2Y6R significantly attenuated hypertrophic growth and cell death caused by hypotonic stimulation, indicating the involvement of P2Y6R in mechanical stress-induced myocardial dysfunction. Unexpectedly, compared with wild-type mice, deletion of P2Y6R promoted pressure overload-induced sudden death, as well as cardiac remodeling and dysfunction. Mice with cardiomyocyte-specific overexpression of P2Y6R also exhibited cardiac dysfunction and severe fibrosis. In contrast, P2Y6R deletion had little impact on oxidative stress-mediated cardiac dysfunction induced by doxorubicin treatment. These findings provide overwhelming evidence that systemic inhibition of P2Y6R exacerbates pressure overload-induced heart failure in mice, although P2Y6R in cardiomyocytes contributes to the progression of cardiac fibrosis.
    Matched MeSH terms: Ventricular Remodeling/genetics*; Ventricular Remodeling/physiology
  7. Perak AM, Khan SS, Colangelo LA, Gidding SS, Armstrong AC, Lewis CE, et al.
    J Am Soc Echocardiogr, 2021 04;34(4):388-400.
    PMID: 33212181 DOI: 10.1016/j.echo.2020.11.002
    BACKGROUND: Little is known about the timing of preclinical heart failure (HF) development, particularly among blacks. The primary aims of this study were to delineate age-related left ventricular (LV) structure and function evolution in a biracial cohort and to test the hypothesis that young-adult LV parameters within normative ranges would be associated with incident stage B-defining LV abnormalities over 25 years, independent of cumulative risk factor burden.

    METHODS: Data from the Coronary Artery Risk Development in Young Adults study were analyzed. Participants (n = 2,833) had a mean baseline age of 30.1 years; 45% were black, and 56% were women. Generalized estimating equation logistic regression was used to estimate age-related probabilities of stage B LV abnormalities (remodeling, hypertrophy, or dysfunction) and logistic regression to examine risk factor-adjusted associations between baseline LV parameters and incident abnormalities. Cox regression was used to assess whether baseline LV parameters associated with incident stage B LV abnormalities were also associated with incident clinical (stage C/D) HF events over >25 years' follow-up.

    RESULTS: Probabilities of stage B LV abnormalities at ages 25 and 60 years were 10.5% (95% CI, 9.4%-11.8%) and 45.0% (95% CI, 42.0%-48.1%), with significant race-sex disparities (e.g., at age 60, black men 52.7% [95% CI, 44.9%-60.3%], black women 59.4% [95% CI, 53.6%-65.0%], white men 39.1% [95% CI, 33.4%-45.0%], and white women 39.1% [95% CI, 33.9%-44.6%]). Over 25 years, baseline LV end-systolic dimension indexed to height was associated with incident systolic dysfunction (adjusted odds ratio per 1 SD higher, 2.56; 95% CI, 1.87-3.52), eccentric hypertrophy (1.34; 95% CI, 1.02-1.75), concentric hypertrophy (0.69; 95% CI, 0.51-0.91), and concentric remodeling (0.68; 95% CI, 0.58-0.79); baseline LV mass indexed to height2.7 was associated with incident eccentric hypertrophy (1.70; 95% CI, 1.25-2.32]), concentric hypertrophy (1.63; 95% CI, 1.19-2.24), and diastolic dysfunction (1.24; 95% CI, 1.01-1.52). Among the entire cohort with baseline echocardiographic data available (n = 4,097; 72 HF events), LV end-systolic dimension indexed to height and LV mass indexed to height2.7 were significantly associated with incident clinical HF (adjusted hazard ratios per 1 SD higher, 1.56 [95% CI, 1.26-1.93] and 1.42 [95% CI, 1.14-1.75], respectively).

    CONCLUSIONS: Stage B LV abnormalities and related racial disparities were present in young adulthood, increased with age, and were associated with baseline variation in indexed LV end-systolic dimension and mass. Baseline indexed LV end-systolic dimension and mass were also associated with incident clinical HF. Efforts to prevent the LV abnormalities underlying clinical HF should start from a young age.

    Matched MeSH terms: Ventricular Remodeling*
  8. Vyshnevska IR, Storozhenko T, Kopytsya MP, Bila NV, Kis A, Kaaki M
    Wiad Lek, 2023;76(5 pt 1):911-919.
    PMID: 37326070 DOI: 10.36740/WLek202305104
    OBJECTIVE: The aim: To estimate the role of macrophage migration inhibitory factor and soluble ST2 in predicting the left ventricle remodeling six months after ST-segment elevation myocardial infarction.

    PATIENTS AND METHODS: Materials and methods: The study involved 134 ST-segment elevation myocardial infarction patients. Occurrence of post-percutaneous coronary (PCI) intervention epicardial blood flow of TIMI <3 or myocardial blush grade 0-1 along with ST resolution <70% within 2 hours after PCI was qualified as the no-reflow condition. Left ventricle remodeling was defined after 6-months as an increase in left ventricle end-diastolic volume and/or end-systolic volume by more than 10%.

    RESULTS: Results: A logistic regression formula was evaluated. Included biomarkers were macrophage migration inhibitory factor and sST2, left ventricle ejection fraction: Y=exp(-39.06+0.82EF+0.096ST2+0.0028MIF) / (1+exp(-39.06+0.82EF+0.096ST2+0.0028MIF)). The estimated range is from 0 to 1 point. Less than 0.5 determines an adverse outcome, and more than 0.5 is a good prognosis. This equation, with sensitivity of 77 % and specificity of 85%, could predict the development of adverse left ventricle remodeling six months after a coronary event (AUC=0.864, CI 0.673 to 0.966, p<0.05).

    CONCLUSION: Conclusions: A combination of biomarkers gives a significant predicting result in the formation of adverse left ventricular remodeling after ST-segment elevation myocardial infarction.

    Matched MeSH terms: Ventricular Remodeling/physiology
  9. Chuah SH, Tan LK, Md Sari NA, Chan BT, Hasikin K, Lim E, et al.
    J Magn Reson Imaging, 2024 Apr;59(4):1242-1255.
    PMID: 37452574 DOI: 10.1002/jmri.28915
    BACKGROUND: Increased afterload in aortic stenosis (AS) induces left ventricle (LV) remodeling to preserve a normal ejection fraction. This compensatory response can become maladaptive and manifest with motion abnormality. It is a clinical challenge to identify contractile and relaxation dysfunction during early subclinical stage to prevent irreversible deterioration.

    PURPOSE: To evaluate the changes of regional wall dynamics in 3D + time domain as remodeling progresses in AS.

    STUDY TYPE: Retrospective.

    POPULATION: A total of 31 AS patients with reduced and preserved ejection fraction (14 AS_rEF: 7 male, 66.5 [7.8] years old; 17 AS_pEF: 12 male, 67.0 [6.0] years old) and 15 healthy (6 male, 61.0 [7.0] years old).

    FIELD STRENGTH/SEQUENCE: 1.5 T Magnetic resonance imaging/steady state free precession and late-gadolinium enhancement sequences.

    ASSESSMENT: Individual LV models were reconstructed in 3D + time domain and motion metrics including wall thickening (TI), dyssynchrony index (DI), contraction rate (CR), and relaxation rate (RR) were automatically extracted and associated with the presence of scarring and remodeling.

    STATISTICAL TESTS: Shapiro-Wilk: data normality; Kruskal-Wallis: significant difference (P 

    Matched MeSH terms: Ventricular Remodeling
  10. Yap LB, Qadir F, Nguyen ST, Ma SK, Koh KW, Muhammad Z, et al.
    Int J Cardiol, 2015 Mar 15;183:178-9.
    PMID: 25666128 DOI: 10.1016/j.ijcard.2015.01.042
    Matched MeSH terms: Ventricular Remodeling/physiology
  11. Chung CH, Bretherton B, Zainalabidin S, Deuchars SA, Deuchars J, Mahadi MK
    Front Neurosci, 2020;14:906.
    PMID: 33013299 DOI: 10.3389/fnins.2020.00906
    Background: Myocardial infarction (MI) reperfusion therapy causes paradoxical cardiac complications. Following restoration of blood flow to infarcted regions, a multitude of inflammatory cells are recruited to the site of injury for tissue repair. Continual progression of cardiac inflammatory responses does, however, lead to adverse cardiac remodeling, inevitably causing heart failure.

    Main Body: Increasing evidence of the cardioprotective effects of both invasive and non-invasive vagal nerve stimulation (VNS) suggests that these may be feasible methods to treat myocardial ischemia/reperfusion injury via anti-inflammatory regulation. The mechanisms through which auricular VNS controls inflammation are yet to be explored. In this review, we discuss the potential of autonomic nervous system modulation, particularly via the parasympathetic branch, in ameliorating MI. Novel insights are provided about the activation of the cholinergic anti-inflammatory pathway on cardiac macrophages. Acetylcholine binding to the α7 nicotinic acetylcholine receptor (α7nAChR) expressed on macrophages polarizes the pro-inflammatory into anti-inflammatory subtypes. Activation of the α7nAChR stimulates the signal transducer and activator of transcription 3 (STAT3) signaling pathway. This inhibits the secretion of pro-inflammatory cytokines, limiting ischemic injury in the myocardium and initiating efficient reparative mechanisms. We highlight recent developments in the controversial auricular vagal neuro-circuitry and how they may relate to activation of the cholinergic anti-inflammatory pathway.

    Conclusion: Emerging published data suggest that auricular VNS is an inexpensive healthcare modality, mediating the dynamic balance between pro- and anti-inflammatory responses in cardiac macrophages and ameliorating cardiac ischemia/reperfusion injury.

    Matched MeSH terms: Ventricular Remodeling
  12. Colangelo LA, Carroll AJ, Perak AM, Gidding SS, Lima JAC, Lloyd-Jones DM
    Psychosom Med, 2024 01 09;86(2):60-71.
    PMID: 38193784 DOI: 10.1097/PSY.0000000000001277
    OBJECTIVE: Depression is a risk factor for coronary heart disease and left ventricular hypertrophy (LVH) is a potent predictor of coronary heart disease events. Whether depression is associated with LVH has received limited investigation. This study assessed cross-sectional and 20-year longitudinal associations of depressive symptoms with LVH outcomes after accounting for important known confounders.

    METHODS: From 5115 participants enrolled in 1985-1986 in the Coronary Artery Risk Development in Young Adults Study, 2533 had serial measures of depressive symptoms and subsequent echocardiography to measure normal LV geometry, concentric remodeling, and LVH. The primary exposure variable was trajectories of the Center for Epidemiologic Studies Depression (CES-D) scale score from 1990-1991 to 2010-2011. Multivariable polytomous logistic regression was used to assess associations of trajectories with a composite LV geometry outcome created using echocardiogram data measured in 2010-2011 and 2015-2016. Sex-specific conflicting results led to exploratory models that examined potential importance of testosterone and sex hormone-binding globulin.

    RESULTS: Overall CES-D and Somatic subscale trajectories had significant associations with LVH for female participants only. Odds ratios for the subthreshold (mean CES-D ≈ 14) and stable (mean CES-D ≈ 19) groups were 1.49 (95% confidence interval = 1.05-2.13) and 1.88 (95% confidence interval = 1.16-3.04), respectively. For female participants, sex hormone-binding globulin was inversely associated with LVH, and for male participants, bioavailable testosterone was positively associated with concentric geometry.

    CONCLUSIONS: Findings from cross-sectional and longitudinal regression models for female participants, but not male ones, and particularly for Somatic subscale trajectories suggested a plausible link among depression, androgens, and LVH. The role of androgens to the depression-LVH relation requires additional investigation in future studies.

    Matched MeSH terms: Ventricular Remodeling
  13. Fadieienko G, Gridniev O
    PMID: 26656546
    The purpose of research - to study the features of circadian profile of blood pressure (BP), the data of echocardiography, pH-monitoring, lipid spectrum, level of apelin and the state of the system "lipid peroxidation-antioxidant protection" in patients with a combination of arterial hypertension (AH) and gastroesophageal reflux disease (GERD) depending on the level of AH. It was examined 126 patients with combination of AH II stage, 2-3 degrees, and GERD, 70 (55.56%) men and 56 (44.44%) women, mean age 56.84 ± 1.17. The anthropometric indicators, a condition of "lipid peroxidation- antioxidant protection", the level of apelin, ambulatory blood pressure monitoring (ABPM), echocardiography, esophageal pH-monitoring were evaluated. Analysis of the results was performed using a computer program IBM SPSS Statistics 21.0 for Windows XP. According to the daily averages ABPM systolic BP/diastolic BP in the I group were 141.2 ± 0.8/90.4 ± 0.4 mm Hg., in II group - 163.3 ± 0.9/101.0 ± 0.5 mm Hg., in III group - 185.6 ± 0.8/112.1 ± 0.5 mm Hg., p = 0.001. There are only 25.39% of patients had normal indicators of the variability of BP among individuals with comorbidity. Transformation from mild AH to moderate was accompanied by a significant increase in the severity of left ventricular remodeling by type of concentric hypertrophy. The data of esophageal pH-monitoring allow us to classify the disorders as severe gastroesophageal reflux in patients with a combination of AH and GERD (DeMeester, 1993). In the group with first degree of AH the average rate of circulating apelin was 930.58 ± 56.27 pg/mL, for the patients with 2nd degree of AH - 880.56 ± 17.97 pg/ml, p>0.05, in patients with third degree of AH - 650.91 ± 12.87 pg/ml (p = 0.001). Assessment of lipid profile has allowed to establish the worse dyslipidemia in patients with 3rd degree of AH combined with GERD (atherogenic ratio - 3.11 ± 0.09). The deterioration of degree of AH combined with GERD accompanied by an increase of oxidative stress with increase of nitrites plasma and malondialdehyde concentration, and decrease of glutathione peroxidase and of SH-groups concentration. Increased degree of AH in patients with severe GERD accompanied by worsening of left ventricular remodeling, reduction of apelin levels, progression of dyslipidemia, and imbalances in the system of "lipid peroxidation-antioxidant protection."
    Matched MeSH terms: Ventricular Remodeling*
  14. Ramalingam A, Budin SB, Mohd Fauzi N, Ritchie RH, Zainalabidin S
    Sci Rep, 2021 07 05;11(1):13845.
    PMID: 34226619 DOI: 10.1038/s41598-021-93234-4
    Long-term nicotine intake is associated with an increased risk of myocardial damage and dysfunction. However, it remains unclear whether targeting mitochondrial reactive oxygen species (ROS) prevents nicotine-induced cardiac remodeling and dysfunction. This study investigated the effects of mitoTEMPO (a mitochondria-targeted antioxidant), and resveratrol (a sirtuin activator) , on nicotine-induced cardiac remodeling and dysfunction. Sprague-Dawley rats were administered 0.6 mg/kg nicotine daily with 0.7 mg/kg mitoTEMPO, 8 mg/kg resveratrol, or vehicle alone for 28 days. At the end of the study, rat hearts were collected to analyze the cardiac structure, mitochondrial ROS level, oxidative stress, and inflammation markers. A subset of rat hearts was perfused ex vivo to determine the cardiac function and myocardial susceptibility to ischemia-reperfusion injury. Nicotine administration significantly augmented mitochondrial ROS level, cardiomyocyte hypertrophy, fibrosis, and inflammation in rat hearts. Nicotine administration also induced left ventricular dysfunction, which was worsened by ischemia-reperfusion in isolated rat hearts. MitoTEMPO and resveratrol both significantly attenuated the adverse cardiac remodeling induced by nicotine, as well as the aggravation of postischemic ventricular dysfunction. Findings from this study show that targeting mitochondrial ROS with mitoTEMPO or resveratrol partially attenuates nicotine-induced cardiac remodeling and dysfunction.
    Matched MeSH terms: Ventricular Remodeling/drug effects
  15. Nikolaidou T, Cai XJ, Stephenson RS, Yanni J, Lowe T, Atkinson AJ, et al.
    PLoS One, 2015;10(10):e0141452.
    PMID: 26509807 DOI: 10.1371/journal.pone.0141452
    Heart failure is a major killer worldwide. Atrioventricular conduction block is common in heart failure; it is associated with worse outcomes and can lead to syncope and bradycardic death. We examine the effect of heart failure on anatomical and ion channel remodelling in the rabbit atrioventricular junction (AVJ). Heart failure was induced in New Zealand rabbits by disruption of the aortic valve and banding of the abdominal aorta resulting in volume and pressure overload. Laser micro-dissection and real-time polymerase chain reaction (RT-PCR) were employed to investigate the effects of heart failure on ion channel remodelling in four regions of the rabbit AVJ and in septal tissues. Investigation of the AVJ anatomy was performed using micro-computed tomography (micro-CT). Heart failure animals developed first degree heart block. Heart failure caused ventricular myocardial volume increase with a 35% elongation of the AVJ. There was downregulation of HCN1 and Cx43 mRNA transcripts across all regions and downregulation of Cav1.3 in the transitional tissue. Cx40 mRNA was significantly downregulated in the atrial septum and AVJ tissues but not in the ventricular septum. mRNA abundance for ANP, CLCN2 and Navβ1 was increased with heart failure; Nav1.1 was increased in the inferior nodal extension/compact node area. Heart failure in the rabbit leads to prolongation of the PR interval and this is accompanied by downregulation of HCN1, Cav1.3, Cx40 and Cx43 mRNAs and anatomical enlargement of the entire heart and AVJ.
    Matched MeSH terms: Ventricular Remodeling
  16. Ali SS, Mohamed SFA, Rozalei NH, Boon YW, Zainalabidin S
    Cardiovasc Toxicol, 2019 02;19(1):72-81.
    PMID: 30128816 DOI: 10.1007/s12012-018-9478-7
    Heart failure-associated morbidity and mortality is largely attributable to extensive and unregulated cardiac remodelling. Roselle (Hibiscus sabdariffa) calyces are enriched with natural polyphenols known for antioxidant and anti-hypertensive effects, yet its effects on early cardiac remodelling in post myocardial infarction (MI) setting are still unclear. Thus, the aim of this study was to investigate the actions of roselle extract on cardiac remodelling in rat model of MI. Male Wistar rats (200-300 g) were randomly allotted into three groups: Control, MI, and MI + Roselle. MI was induced with isoprenaline (ISO) (85 mg/kg, s.c) for two consecutive days followed by roselle treatment (100 mg/kg, orally) for 7 days. Isoprenaline administration showed changes in heart weight to body weight (HW/BW) ratio. MI was especially evident by the elevated cardiac injury marker, troponin-T, and histological observation. Upregulation of plasma levels and cardiac gene expression levels of inflammatory cytokines such as interleukin (IL)-6 and IL-10 was seen in MI rats. A relatively high percentage of fibrosis was observed in rat heart tissues with over-expression of collagen (Col)-1 and Col-3 genes following isoprenaline-induced MI. On top of that, cardiomyocyte areas were larger in heart tissues of MI rats with upregulation of atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) gene expression, indicating cardiac hypertrophy. Interestingly, roselle supplementation attenuated elevation of plasma troponin-T, IL-6, IL10, and gene expression level of IL-10. Furthermore, reduction of cardiac fibrosis and hypertrophy were observed. In conclusion, roselle treatment was able to limit early cardiac remodelling in MI rat model by alleviating inflammation, fibrosis, and hypertrophy; hence, the potential application of roselle in early adjunctive treatment to prevent heart failure.
    Matched MeSH terms: Ventricular Remodeling
  17. Yap LB, Nguyen ST, Qadir F, Ma SK, Muhammad Z, Koh KW, et al.
    Acta Cardiol, 2016 Jun;71(3):323-30.
    PMID: 27594128 DOI: 10.2143/AC.71.3.3152093
    Matched MeSH terms: Ventricular Remodeling
  18. Kamisah Y, Periyah V, Lee KT, Noor-Izwan N, Nurul-Hamizah A, Nurul-Iman BS, et al.
    Pharm Biol, 2015;53(9):1243-9.
    PMID: 25853965 DOI: 10.3109/13880209.2014.971383
    Virgin coconut oil (VCO) contains high antioxidant activity which may have protective effects on the heart in hypertensive rats.
    Matched MeSH terms: Ventricular Remodeling
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links