The ability of a robot to plan its own motion seems pivotal to its autonomy, and that is why the motion planning has become part and parcel of modern intelligent robotics. In this paper, about 100 research are reviewed and briefly described to identify and classify the amount of the existing work for each motion planning approach. Meanwhile, around 200 research were used to determine the percentage of the application of each approach. The paper includes comparative tables and charts showing the application frequency of each approach in the last 30 years. Finally, some open areas and challenging topics are presented based on the reviewed papers.
Biodiesel is an attractive renewable energy source, which is suitable as a substitute to the non-renewablepetroleum diesel. However, it is plagued by its relatively bad cold flow behaviour. In this review, the factorsaffecting the cold flow of biodiesel, vis-à-vis the contradicting requirement of good cold flow and good ignitionproperties, are discussed. Fuel filter plugging, and crystallization of biodiesel are considered, together with thecold flow properties such as Pour Point (PP), Cloud Point (CP), Cold Filter Plugging Point (CFPP) and LowTemperature Filterability Test (LTFT). In addition, various methods used to improve the cold flow of biodieselare also presented, with a special emphasis laid on the effects of these methods in reducing the Cloud Point.Strategies to improve cold flow, and yet maintaining the good ignition quality of biodiesel, are also proposed.As far as the cold flow of biodiesel is concerned, desirable attributes of its esters are short, unsaturated andbranched carbon chains. However, these desirable attributes present opposing properties in terms of ignitionquality and oxidation stability. This is because esters with short, unsaturated and branched carbon chainspossess very good cold flow but poor ignition quality and oxidation stability. The target is therefore to producebiodiesel with good cold flow, sufficient ignition quality, and good oxidation stability. This target proves tobe quite difficult and is a major problem in biodiesel research. New frontiers in this research might be thedesign of the new cold flow improvers that is similar to those used in the petroleum diesel but is tailored forbiodiesel. Genetic modifications of the existing feedstock are also desirable but the food uses of this particularfeedstock should always be taken into consideration.
The crystal structure of the title compound has been determined. The compound crystallized in the triclinic space group P -1, Z = 2, V = 1839.42(18) Å3 and unit cell parameters a = 11.0460(6) Å, b = 13.3180(7) Å, c = 13.7321(8) Å, a = 80.659(3)°, ß = 69.800(3)° and ? = 77.007(2)° with one disordered dimethylsulfoxide solvent molecule with the sulfur and oxygen atoms are distributed over two sites; S101/S102 [site occupancy factors: 0.6035/0.3965] and O130/O131 [site occupancy factor 0.3965/0.6035]. The C22-S21 and C19-S20 bond distances of 1.779(7) Å and 1.788(8) Å indicate that both of the molecules are connected by the disulfide bond [S20-S21 2.055(2) Å] in its thiol form. The crystal structure reveals that both of the 5-bromoisatin moieties are trans with respect to the [S21-S20 and C19-N18] and [S20-S21 and C22-N23] bonds whereas the benzyl group from the dithiocarbazate are in the cis configuration with respect to [S21-S20 and C19-S44] and [S20-S21 and C22-S36] bonds. The crystal structure is further stabilized by intermolecular hydrogen bonds of N9-H35···O16 formed between the two molecules and N28-H281···O130, N28-H281···O131 and C41-H411···O131 with the solvent molecule.
Industrial heat pumps are heat-recovery systems that allow the temperature of waste-heat stream to be increased to a higher, more efficient temperature. Consequently, heat pumps can improve energy efficiency in industrial processes as well as energy savings when conventional passive-heat recovery is not possible. In this paper, possible ways of saving energy in the chemical industry are considered, the objective is to reduce the primary energy (such as coal) consumption of power plant. Particularly the thermodynamic analyses of integrating backpressure turbine of a power plant with distillation units have been considered. Some practical examples such as conventional distillation unit and heat pump are used as a means of reducing primary energy consumption with tangible indications of energy savings. The heat pump distillation is operated via electrical power from the power plant. The exergy efficiency of the primary fuel is calculated for different operating range of the heat pump distillation. This is then compared with a conventional distillation unit that depends on saturated steam from a power plant as the source of energy. The results obtained show that heat pump distillation is an economic way to save energy if the temperature difference between the overhead and the bottom is small. Based on the result, the energy saved by the application of a heat pump distillation is improved compared to conventional distillation unit.
MeSH terms: Chemical Industry; Coal; Electricity; Hot Temperature; Power Plants; Steam; Temperature; Thermodynamics; Rivers; Biological Processes; Distillation
In this study, the rice husk flour-plastic waste composites (RPC) was produced from polypropylene (PP) and high density polyethylene (HDPE) wastes with 30 and 50% rice husk flour (RHF) contents. RPC was made by melt compounding and compression moulding processes. The electrical resistivity, thermal stability and tensile strength of RPC were determined. The RPC was tested in electrical resistivity and tensile strength according to the ASTM D-257 and ASTM D-638 respectively, while thermal stability was tested using thermogravimetric analysis (TGA) method. From the results, high content of RHF reduces all properties, except for tensile modulus of elasticity (TMOE) in tensile strength test. The ability of moisture absorption and the presence of hemicelluloses, cellulose and silica in RHF reduce the electrical resistivity and thermal stability behaviour of RPC from 50% RHF. The good binding elements and filler agglomeration in RPC from 50% RHF improve only TMOE. Insufficient stress transfer and rigid interphase occurred between RHF and plastics during tensile maximum load and elongation at break (Eb) in tensile strength test. In general, RPC from HDPE indicates better thermal stability, tensile modulus of rupture and Eb (in tensile strength test) compared to PP, based on the good behaviour of thermal conductivity, low water absorption, high molecular weight and good elongation properties of HDPE. However, RPC from PP shows good electrical resistance due to the low thermal expansion coefficient of PP.
Metakaolin is a manufactured pozzolan produced by thermal processing of purified kaolinitic clay using electrical furnace. This study has examined the effect of Metakaolin on the properties of cement and concrete at a replacement level of 0%, 5%, 10% and 15%. The parameters studied were divided into two groups which are chemical compositions, water requirement, setting time and soundness test were carried out for cementitous properties. Workability, compressive strength and bending strength were test for concrete properties. Hardened concrete was cured under different type of curing conditions and tested.. The result showed that the inclusions of Metakaolin as cement replacement minerals have change some of the cementitous and concrete properties. This research reveals, the optimum effect for cementitous and concrete properties for metakaolin was 10%.
α-Mangostin was extracted from the pericarp of the Malaysian local Garcinia mangostana linn., The structure was characterised by Infrared red, UV-Visible and Nuclear Magnetic Resonance spectroscopic data. The fluorescence peak at 500nm in ethanol was not observed in PNIPAM microgel solution. The increase of colloidal size of the gel in the presence of α-mangostin was studied by Dynamic Light Scattering and Transmission Electron Microscope. The size of the particle also increases with increasing temperature up to 45⁰C after which it began to shrink. The TEM micrograph at 45°C showed a uniformly structured pattern of the gel occurs in the range of the lowest solution critical temperature.
From earliest cities to the present, spatial division into residential zones and neighbourhoods is the universal feature of urban areas. This study explored issue of measuring neighbourhoods through spatial autocorrelation method based on Moran’s I index in respect of achieving to best neighbourhoods’ model for forming cities smarter. The research carried out by selection of 35 neighbourhoods only within central part of traditional city of Kerman in Iran. The results illustrate, 75% of neighbourhoods’ area in the inner city of Kerman had clustered pattern, and it shows reduction in Moran’s index is associated with disproportional distribution of density and increasing in Moran’s I and Z-score have monotonic relation with more dense areas and clustered pattern. It may be more efficient for urban planner to focus on spatial autocorrelation to foster neighbourhood cohesion rather than emphasis on suburban area. It is recommended characteristics of historic neighbourhoods can be successfully linked to redevelopment plans toward making city smarter, and also people’s quality of life can be related to the way that neighbourhoods’ patterns are defined.
Cyclic guanosine monophosphate (cGMP) is a second messenger molecule involved in the intracellular signalling mechanism which is important in a wide range of cellular process including metabolism, gene expression, cell proliferation and cell death. This study was conducted to determine the effect of fresh (FCC)) and thermoxidized carotino oil (TCO) on erythrocyte cGMP levels from Sprague dawley rats. A total of 30 Sprague dawley rats were randomly segregated into three groups: the first of which was placed on a Fresh Carotino Oil (FCO) diet, the second on a Thermoxidized Carotino Oil (TCO) diet and the control group on commercial rat chow only for a period of 6 and 9 weeks. The two oil diets comprised of 20% (w.10 of each oil mixed with commercial rat,feed. The enzyme immunoassays, performed in week 6, revealed that the erythrocytes cGMP levels for the FCO and TCO groups were 66.198±3.193 pmol/mL and 61.990±6.318 ptnol/mL respectively, and were significantly (p
Molecular self-assembly is ubiquitous in nature and has emerged as a new approach to produce new materials in chemistry, engineering, nanotechnology, polymer science and materials. Molecular self-assembly has been attracting increasing interest from the scientific community in recent years due to its importance in understanding biology and a variety of diseases at the molecular level. In the last few years, considerable advances have been made in the use of peptides as building blocks to produce biological materials for wide range of applications, including fabricating novel supra-molecular structures and scaffolding for tissue repair. The study of biological self-assembly systems represents a significant advancement in molecular engineering and is a rapidly growing scientific and engineering field that crosses the boundaries of existing disciplines. Many self-assembling systems are range from bi- and tri-block copolymers to DNA structures as well as simple and complex proteins and peptides. The ultimate goal is to harness molecular self-assembly such that design and control of bottom-up processes is achieved thereby enabling exploitation of structures developed at the meso- and macro-scopic scale for the purposes of life and non-life science applications. Such aspirations can be achieved through understanding the fundamental principles behind the selforganisation and self-synthesis processes exhibited by biological systems.
Collagen was extracted from catfish (Clarias gariepnus) waste using 0.5M acetic acid and its subsequent precipitation in 2.6M NaCl. The resultant collagen was analysed with respect to its moisture content and physicochemical properties including yield, pH, protein content, colour, odour and thermal stability. A yield of 16.4% and positive collagen attributes indicate that catfish waste has potential as a collagen source. The snowy white, crystal-like and light textured collagen comprises of 5.97% protein and 0.46% moisture, and exhibits a pH of 4.75. Sensory evaluation indicates that the collagen has a slight fishy odour. Viscosity analysis indicates a steady decrease with increasing temperature over the range considered (20-50°C). The pale colour exhibited and limited odour emitted by the extracted collagen indicate that catfish waste collagen could be applied in the food industry without resulting in any undesirable food products attributes. Differential Scanning Calorimetry (DSC) analysis indicated that the collagen exhibits good thermal stability and denatures at a high temperature in a similar manner to mammalian collagen.
MeSH terms: Animals; Calorimetry, Differential Scanning; Catfishes; Collagen; Color; Hot Temperature; Light; Odors; Temperature; Viscosity; Acetic Acid; Food Industry
Accurate inspection of welded materials is important in relation to achieve acceptable standards. Radiography, a non-destructive test method, is commonly used to evaluate the internal condition of a material with respect to defect detection. The presence of noise in low resolution of radiographic images significantly complicates analysis; therefore attaining higher quality radiographic images makes defect detection more readily achievable. This paper presents a study pertaining to the quality enhancement of radiographic images with respect to different types of defects. A series of digital radiographic weld flaw images were smoothed using multiple smoothing techniques to remove inherent noise followed by top and bottom hat morphological transformations. Image quality was evaluated quantitatively with respect to SNR, PSNR and MAE. The results indicate that smoothing enhances the quality of radiographic images, thereby promoting defect detection with the respect to original radiographic images.
Malaria parasites, Plasmodium can infect a wide range of hosts including humans and rodents. There are two copies of mitogen activated protein kinases (MAPKs) in Plasmodium, namely MAPK1 and MAPK2. The MAPKs have been studied extensively in the human Plasmodium, P. falciparum. However, the MAPKs from other Plasmodium species have not been characterized and it is therefore the premise of presented study to characterize the MAPKs from other Plasmodium species-P. vivax, P knowlesi, P berghei, P chabaudi and P.yoelli using a series of publicly available bioinformatic tools. In silico data indicates that all Plasmodium MAPKs are nuclear-localized and contain both a nuclear localization signal (NLS) and a Leucine-rich nuclear export signal (NES). The activation motifs of TDY and TSH were found to be fully conserved in Plasmodium MAPK1 and MAPK2, respectively. The detailed manual inspection of a multiple sequence alignment (MSA) construct revealed a total of 17 amino acid stack patterns comprising of different amino acids present in MAPK1 and MAPK2 respectively, with respect to rodent and human Plasmodia. It is proposed that these amino acid stack patterns may be useful in explaining the disparity between rodent and human Plasmodium MAPKs.
Two major types of services in sepak takraw are kuda and sila services. Even though both services are delivered at high speed, each is composed of different kinematic features. The purpose of the study was to determine the fundamental differences in perceptual strategies in
anticipating the kuda and sila services. The receiver of the game in sepak takraw makes decisions under severe time constraint in both spatial and temporal uncertainty. The study examined two groups of 12 players each; the experts and the novices. Perceptual displays in anticipation of the
kuda and sila services were prompted using video stimulations consisting of seven temporal occlusions t1 (240 milliseconds at pre-contact), t2 (160 milliseconds at pre-contact), t3 (80 milliseconds at pre-contact, t4 (0 millisecond at contact), t5 (80 milliseconds at post-contact), t6 (160
milliseconds at post-contact), and t7 (no occlusion). Significant differences amongst expert players in anticipating kuda and sila services were at t1 F (14, 180) = 2.37; p < 0.05], t2 F (14, 180) = 5.60; p < 0.05], t3 F (14, 180) = 3.81; p < 0.05] and t4 F (14, 180) = 2.00; p < 0.05]. Similar comparisons at t5, t6, and t7 did not yield any significant differences. In addition, there were significant differences amongst novice players in anticipating kuda and sila services at t2 F (14,
180) = 2.27; p < 0.05], t3 F (14, 180) = 1.94; p < 0.05], t4 F (14, 180) = 2.61; p < 0.05], and t5 F (14, 180) = 9.38; p < 0.05]. Overall findings revealed that expert players found it more difficult to anticipate kuda service compared to sila service at t1. Hence, the kuda service is more
difficult to anticipate than sila service. Participants of this study demonstrated a more effective visual perceptual strategy to counter attack a sila service than they would with a kuda service.
MeSH terms: Animals; Behavior, Animal; Biomechanical Phenomena; Play and Playthings; Recreation; Social Behavior; Uncertainty
The ability to produce performances at highest level under physically and emotionally demanding conditions underline the worth of a sportsperson. These stressful conditions places demands on the cognitive resources of the sportsperson; especially in anticipatory actions that require the allocation of cognitive resources. This study investigated the effects of cognitive stress on the temporal anticipation of a timing motor task. A repeated measures design was applied with two independent variables; cognitive stress and levels of difficulty, which included easy, intermediate and difficult. Study participants were 18 male and 18 female undergraduates of the Physical Education programme of Universiti Putra Malaysia. The experimental task involved performing a timing motor task across the three levels of difficulty, under two conditions as follows: (i) without cognitive stress, and (ii) under cognitive stress. Cognitive stress was induced via the continuous subtraction of two from a two-digit number. Participants performed the task individually and the sequence of the experimental task was counter-balanced. A two-way within subject ANOVA was
performed to ascertain the effects of cognitive stress on the temporal anticipation of the timing motor task. Data yielded significant difference in means for the stress main effect [Λ = .64, F (1.35) = 19.89, p < 0.05]; and the task main effect [Λ = .84, F (2, 34) = 3.35, p < 0.05]. Post hoc comparisons produced a significant difference in the means of the performance of the timing motor task at all three levels of difficulty. Data showed that cognitive stress had an effect on the temporal anticipation of the timing motor task. These results are explained from attentional and the neuromotor noise perspectives. It was concluded that the significant difference in the performance of the experimental task was due to the competition for intentional resources and the decrease of the signal to noise ratio due to cognitive stress.
MeSH terms: Analysis of Variance; Attention; Cognition; Female; Malaysia; Male; Noise; Physical Education and Training; Signal-To-Noise Ratio
Postural movements potentially affect aiming stability in archery, thus contributing to chances of inconsistent hits. According to the expertisenovice paradigm, the factor that sets winners apart from ordinary athletes is the former’s ability to control minute changes in their performance. The
present study seeks to determine the relationship between postural sway and shooting performance amongst Malaysian skilled recurve archers. Twenty one skilled Malaysian archers participated in this study, where performance level was measured by rank tournaments International Archery Federation (FITA) score. Postural sway was assessed in terms of anterior deviation (positive value) and posterior deviation (negative value) using ZEPHYR Bio-Harness. Postural sway was analysed at the following three phases; (i) setup, (ii) aiming, and (iii) release. Participants shot 12 arrows to a 30-meter target. Data yielded a significant relationship between postural sway and shooting performance. The correlation coefficients between shooting performance and postural sway value for skilled archers ranged between (r = -0.021 to 0.248) with the highest correlation recorded at the release phase, with the lowest at the aiming phase. The setup phase showed the only anterior deviation throughout the test. During the setup and release phases, correlation between postural sway with shooting performance was significantly noted (p < 0.001). Multiple regression analysis showed that postural sway during the setup and release phases were the significant indicators for shooting performance, accounting approximately 17% and 24% of the variances respectively. In sum, the results indicate that reducing postural sway
during the release phase can increase shooting performance of skilled archery athletes, thus establishing a significant relationship between the postural sway value with shooting performance of skilled archers.
The takraw ball is a very unique interwoven ball used in the action game of sepak takraw. The traditional takraw ball is manufactured by conventionally weaving split rattan strips into a spherical basket. Modern takraw balls are manufactured by forming strips of plastics materials into interwoven hoop. These interwoven hoops form 12 pentagon holes and 30 intersections. The purpose of this study is to construct a finite-element (FE) model of a takraw ball in particular for normal impact simulation on flat surfaces under low speed conditions. Two FE models were developed to observe the dynamic behavior including impact forces, contact time, coefficient of restitution and deformation of the ball. The first model consists of a single solid hollow ball with 12 pentagon holes and the second model consists of six center strips and 12 side edge strips of
extrusion hoops to form 12 pentagon holes and 270 cross-sections. The models were also compared with results of experimental impact tests whereby the ball was impacted normal to a rigid plate at three different heights. The ball is described in the FE model as a linear elastic material.
It was found that the FE analysis solution of the ball model was found to be reasonably close with the experimental results. However further improvement need to be done by taking into consideration the nonlinearity of the takraw ball under large deformation as well as at high impact velocity.
The increase in weight-lifting performance after resistance training is greater than the increase seen in maximal voluntary isometric contraction (MVC). This discrepancy has been attributed to learning and coordination. The purpose of the present study was to look into the contribution of joint angle specificity, and the specificity of the movement at various speeds in explaining the disproportionate increase in weightlifting strength compared to isometric strength. Eighteen participants completed the study. The quadriceps muscle group of each individual was trained unilaterally on a leg extension machine. Participants performed four sets of ten lifts at a steady pace. A load of 80% of the maximum load (1RM) was prescribed. The MVC of the quadriceps was measured on a strength-testing chair. The length-tension relationship was measured isometrically at 600, 750, 900, and 1050 of knee flexion. Measurement of isokinetic strength at velocities of 450/s, 1800/s and 300/s were made. All measurements were made before and after the training. The eight weeks training resulted in a 33% increased in weights lifted (p < 0.05) that was significantly greater than the gain in isometric MVC (6%). Significant gains in isometric strength were seen at all the joint angle but with no evidence of length specificity. Although there were significant gains in strength at higher velocities, they were not sufficient to explain the increased weight-lifting performance and, in any case, similar gains were seen with the untrained leg where no improvement in weight-lifting
performance was seen. From the findings it is concluded that angle and velocity specificity could not fully account for the discrepancy between gains in weight-lifting performance compared to isometric strength.
The combined metabolic and thermoregulatory demands experienced during exercise in the heat impose an exceptional stress on the circulatory system. To date, much of what is known about circulatory stress during exercise in the heat has focused on primarily dry environment (~ 40% rh)
with limited studies carried in higher humidity (> 60% rh) conditions. This study was designed to investigate the influence of humid condition on circulatory responses during prolonged intense running exercise among elite runners. On separate days, 11 male elite runners ran for 60 minutes at
an intensity of 70% max across three different humidity levels of HH (71% rh), NH (43% rh) and LH (26.2% rh) with the ambient temperature set at 300C. Thermal stress was found to increase during exercise in the HH condition as both Tre and Tsk steadily rise across time. Circulatory stress markedly increased during exercise in higher humidity levels. Heart rate was significantly higher in the HH condition with its level increasing to 92% of HRmax. The upwards drift in HR was significantly higher in HH within the last ten minutes of exercise. Contrary, stroke volume recorded a
steady decline during exercise with a significantly lower SV in the HH as compared with the NH and LH. Results implicate rising humidity level will impose greater circulatory stress during prolonged intense exercise. The consequence from this circulatory stress will result in limited ability for an athlete to sustain his exercise capacity when HR reaches maximal level.
The purpose of this study was to investigate the relationship between anthropometric and motor performance and to determine the contribution of combined anthropometric dimensions on motor performance. A total of 225 male (n = 138) and female (n = 87) Malaysian university athletes aged
between 18 and 28 years (M = 22.1, SD = 1.8) from 18 different team related sports and individual sports participated in this study. The subjects underwent anthropometric measurements (height, weight, BMI,% body fat, waist-hip ratio) and motor performance tests (grip strength - GS, back
strength - BS, 7 level sit-up - SU7, 10m sprint - S10, 30m sprint - S30, sit and reach - SR, trunk extension test - TE, SEMO agility test - SEMO, vertical jump - VJ, standing long jump - SLJ, reaction time (audio) - RTa, reaction time (visual) - RTv, bleep test - Bleep, leg strength - LS, stork test– ST, and push-ups - PU). Descriptive analysis showed that anthropometric and performance difference between sports reflected the needs and requirements of the sports. Multivariate Analysis of Covariance (MANCOVA) and multiple regression analysis showed that height, weight, BMI, % body fat, waist-hip ratio contributed positively or negatively on specific components of motor performance. Among male athletes, all anthropometric were found to be a significant contributor to strength, vertical jump, cardiovascular endurance, while among females, only % body fat and WHR contributed significantly to abdominal strength, vertical jump and trunk extension. Findings of the study suggested that anthropometric characteristics that contributed to motor performance should provide a scientific rationale in selecting and training of athletes.
MeSH terms: Adipose Tissue; Anthropometry; Body Weight; Female; Humans; Leg; Male; Reaction Time; Regression Analysis; Sports; Universities; Body Mass Index; Multivariate Analysis; Hand Strength; Waist-Hip Ratio; Athletes