Browse publications by year: 2016

  1. Ibrahim N, Nazimi AJ, Ajura AJ, Nordin R, Latiff ZA, Ramli R
    J Craniofac Surg, 2016 Jul;27(5):1361-6.
    PMID: 27391504 DOI: 10.1097/SCS.0000000000002792
    The aim of this study was to describe the clinical features and expression of bcl-2, cyclin D1, p53, and proliferating cell nuclear antigen (PCNA) antibodies in syndromic (nevoid basal cell carcinoma syndrome [NBCCS]) and nonsyndromic patients diagnosed with keratocystic odontogenic tumor (KCOT).

    METHODS: This descriptive study comprised 5 patients of KCOT associated with NBCCS and 8 patients of nonsyndromic type treated in the Department of Oral Maxillofacial Surgery, Universiti Kebangsaan Malaysia Medical Centre between years 1998 and 2011. The clinical features (site, size, treatment, and recurrence), demographic characteristics, and immunohistochemistry results using antibodies of bcl-2, cyclin D1, p53, and PCNA were examined. The association of the antibody expression and the type of KCOT was analyzed using Fisher exact test.

    RESULTS: Altogether there were 13 patients, 5 with syndromic KCOT (1 patient met 3 major criteria of NBCCS) and 8 with sporadic KCOT. The age range for syndromic KCT was 11 to 21 years (mean 16.00 years, SD 4.36) and 10 to 54 years (median 24.50 years, interquartile range 19.00) for the nonsyndromic KCOT. Tumor recurrence occurred in 3 patients (7.7%); 1 patient from the syndromic and 2 patients from the nonsyndromic. The most positive expression was observed in PCNA for both the syndromic and nonsyndromic samples and the least positive expression involved the p53.

    CONCLUSION: PCNA, bcl-2 protein, and cyclin D1 expressions could be useful in evaluating the proliferative activity of the tumor and the aggressiveness of the clinical presentation; however, the authors would propose for larger sample size research for more definitive results.

    MeSH terms: Adolescent; Adult; Child; DNA, Neoplasm/genetics*; Female; Humans; Immunohistochemistry; Male; Middle Aged; Odontogenic Tumors/diagnosis; Odontogenic Tumors/genetics*; Odontogenic Tumors/metabolism; Gene Expression Regulation, Neoplastic*; Tumor Suppressor Protein p53/biosynthesis; Tumor Suppressor Protein p53/genetics*; Proliferating Cell Nuclear Antigen/biosynthesis; Proliferating Cell Nuclear Antigen/genetics*; Proto-Oncogene Proteins c-bcl-2/biosynthesis; Proto-Oncogene Proteins c-bcl-2/genetics*; Cyclin D1/biosynthesis; Cyclin D1/genetics*; Young Adult
  2. Islam MA, Jassim WA, Cheok NS, Zilany MS
    PLoS One, 2016;11(7):e0158520.
    PMID: 27392046 DOI: 10.1371/journal.pone.0158520
    Speaker identification under noisy conditions is one of the challenging topics in the field of speech processing applications. Motivated by the fact that the neural responses are robust against noise, this paper proposes a new speaker identification system using 2-D neurograms constructed from the responses of a physiologically-based computational model of the auditory periphery. The responses of auditory-nerve fibers for a wide range of characteristic frequency were simulated to speech signals to construct neurograms. The neurogram coefficients were trained using the well-known Gaussian mixture model-universal background model classification technique to generate an identity model for each speaker. In this study, three text-independent and one text-dependent speaker databases were employed to test the identification performance of the proposed method. Also, the robustness of the proposed method was investigated using speech signals distorted by three types of noise such as the white Gaussian, pink, and street noises with different signal-to-noise ratios. The identification results of the proposed neural-response-based method were compared to the performances of the traditional speaker identification methods using features such as the Mel-frequency cepstral coefficients, Gamma-tone frequency cepstral coefficients and frequency domain linear prediction. Although the classification accuracy achieved by the proposed method was comparable to the performance of those traditional techniques in quiet, the new feature was found to provide lower error rates of classification under noisy environments.
    MeSH terms: Algorithms; Cochlear Nerve/physiology; Humans; Models, Theoretical*; Noise; Speech; Speech Perception; Signal-To-Noise Ratio
  3. Mohd Ridzuan J, Aziah BD, Zahiruddin WM
    Int J Occup Environ Med, 2016 07;7(3):156-63.
    PMID: 27393322 DOI: 10.15171/ijoem.2016.699
    BACKGROUND: Leptospirosis is a zoonotic disease that is recognized as a re-emerging global public health issue, especially in tropical and subtropical countries. Malaysia, for example, has increasingly registered leptospirosis cases, outbreaks, and fatalities over the past decade. One of the major industries in the country is the palm oil sector, which employs numerous agricultural workers. These laborers are at a particularly high risk of contracting the disease.

    OBJECTIVE: To identify the work environment-related risk factors for leptospirosis infection among oil palm plantation workers in Malaysia.

    METHODS: A cross-sectional study involving 350 workers was conducted. The participants were interviewed and administered a microscopic agglutination test. Seropositivity was determined using a cut-off titer of ≥1:100.

    RESULTS: 100 of 350 workers tested positive for leptospiral antibodies, hence, a seroprevalence of 28.6% (95% CI 23.8% to 33.3%). The workplace environment-related risk factors significantly associated with seropositive leptospirosis were the presence of cows in plantations (adjusted OR 4.78, 95% CI 2.76 to 8.26) and the presence of a landfill in plantations (adjusted OR 2.04, 95% CI 1.22 to 3.40).

    CONCLUSION: Preventing leptospirosis incidence among oil palm plantation workers necessitates changes in policy on work environments. Identifying modifiable factors may also contribute to the reduction of the infection.

    MeSH terms: Farmers*; Agriculture; Animals; Antibodies, Bacterial/blood*; Cattle; Cross-Sectional Studies; Female; Humans; Leptospira/immunology; Leptospirosis/immunology; Leptospirosis/epidemiology*; Malaysia/epidemiology; Male; Occupational Diseases/microbiology; Occupational Diseases/epidemiology*; Plant Oils; Public Health; Risk Factors; Incidence; Seroepidemiologic Studies*; Occupational Exposure*
  4. Steinhoff PO, Butler SG, Dow RA
    Zootaxa, 2016 Feb 18;4083(1):99-108.
    PMID: 27394221 DOI: 10.11646/zootaxa.4083.1.5
    The final instar larva of Orthetrum borneense Kimmins, 1936, is described and figured for the first time based on exuviae from three male and six female larvae collected in Sarawak, Borneo (East Malaysia). It is compared with an early instar larva, which was matched to the adult O. borneense by DNA barcoding, and the known larvae of other species of this genus that occur in the region.
    MeSH terms: Animals; Animal Structures/anatomy & histology; Animal Structures/growth & development; Borneo; Female; Larva/anatomy & histology*; Larva/classification; Larva/genetics; Larva/growth & development; Malaysia; Male; Organ Size; Phylogeny; Ecosystem; Body Size; Animal Distribution; Odonata/anatomy & histology; Odonata/classification*; Odonata/genetics; Odonata/growth & development
  5. Kamimura Y, Nishikawa M, Lee CY
    Zootaxa, 2016;4084(2):233-57.
    PMID: 27394261 DOI: 10.11646/zootaxa.4084.2.4
    The earwig (Dermaptera) fauna of Penang Island, Malaysia, was evaluated by means of an extensive field survey together with revision of the few published data. Based on the results of the field survey, 31 species are recognized (2 Diplatyidae, 3 Pygidicranidae, 5 Anisolabididae, 2 Labiduridae, 14 Spongiphoridae, 4 Chelisochidae, 1 Forficulidae). Fifteen of these taxa are new to Peninsular Malaysia (=West Malaysia): Diplatys annandalei Burr, 1911, Diplatys mutiara n. sp., Euborellia philippinensis Srivastava, 1979, Metisolabis punctata (Dubrony, 1879), Pseudovostox brindlei Srivastava, 2003, Chaetospania anderssoni Brindle, 1971, Chaetospania javana Borelli, 1926, Chaetospania huisiangi n. sp., Paralabellula boettcheri (Borelli, 1923), Paralabellula rotundifrons (Hincks, 1954), Nesogaster amoenus (Stål, 1855), Hamaxas crassus Borelli, 1926, Proreus coalescens (Borelli, 1927), Hypurgus humeralis (Kirby, 1891), and an unidentified Echinosoma sp. Species composition of the island are compared with the dermapteran fauna of Thailand. Descriptions of females (or female genitalia) are given for some species for the first time.
    MeSH terms: Female; Genitalia, Female; Malaysia; Surveys and Questionnaires; Thailand; Islands; Animal Distribution
  6. Ng PK, Riady R, Windarti W
    Zootaxa, 2016 Feb 29;4084(4):495-506.
    PMID: 27394277 DOI: 10.11646/zootaxa.4084.4.2
    A new species of gecarcinucid freshwater crab of the genus Parathelphusa H. Milne Edwards, 1853, is described from freshwater swamp habitats in Pekanbaru, Riau Province, in central-eastern Sumatra, Indonesia. Parathelphusa pardus sp. nov., has a very distinctive colour pattern, and in this respect, resembles P. maindroni (Rathbun, 1902) from Sumatra and Peninsular Malaysia; P. batamensis Ng, 1992, from Batam Island, Indonesia; P. reticulata Ng, 1990, from Singapore; and P. oxygona Nobili, 1901, from western Sarawak. It can be distinguished from these species and congeners by a suite of carapace, ambulatory leg, thoracic sternal and most importantly, male first gonopod characters.
    MeSH terms: Animals; Animal Structures/anatomy & histology; Animal Structures/growth & development; Brachyura/anatomy & histology; Brachyura/classification*; Brachyura/growth & development; Female; Indonesia; Male; Organ Size; Ecosystem; Body Size; Wetlands; Animal Distribution
  7. Bezděk J
    Zootaxa, 2016 Mar 04;4085(4):504-24.
    PMID: 27394316 DOI: 10.11646/zootaxa.4085.4.3
    The species of the genus Coeligetes Jacoby, 1884 distributed in Malaysia and Indonesia are revised, illustrated and keyed. New species, C. howardi sp. nov. from Borneo is described. New synonymy Coeligetes submetallica Jacoby, 1884 = C. wilcoxi Mohamedsaid, 1994 (syn. nov.) is proposed. New genus and species Coeligetoides trifurcatus gen. nov., sp. nov. (Malaysia, Brunei, Indonesia and Thailand) is described, illustrated and compared with related genera.
    MeSH terms: Animals; Animal Structures/anatomy & histology; Animal Structures/growth & development; Beetles/anatomy & histology*; Beetles/classification*; Beetles/growth & development; Beetles/physiology; Female; Indonesia; Malaysia; Male; Organ Size; Body Size; Animal Distribution
  8. Ng YF, Mound LA
    Zootaxa, 2016 Mar 07;4088(1):141-5.
    PMID: 27394331 DOI: 10.11646/zootaxa.4088.1.8
    The survey of Thysanoptera in peninsular Malaysia has been concentrated largely in areas growing crops and flowers around Kuala Lumpur, and the Cameron Highlands, and there are few records of these insects from native forests particularly in the northern part of the country. The two species described here were collected during a recent visit to Belum-Temengor Forest Complex, in Perak State, part of the second largest forested area on the peninsular, and connected to the Bang Lang National Park, in Yala Province, Thailand. This forest has been well known as home to a number of endangered animals, including Malayan tigers and Asian elephants, as well as remarkable plant species such as Rafflesia with the world's largest flowers (Abdullah et al. 2011). Despite this, forest areas are facing a major challenge from the insatiable demand for timber, palm oil and minerals, with an 80% increase in deforestation rate in Malaysia between 1990 and 2005 (FAO 2010). Forested land in peninsular Malaysia has been estimated at 5.88 million-ha or 44% of total area, but the coverage of reserved virgin forest is about 0.40 % or 23,002-ha (Dahlan 2008).
    MeSH terms: Animals; Animal Structures/anatomy & histology; Animal Structures/growth & development; Female; Malaysia; Male; Organ Size; Body Size; Thysanoptera/anatomy & histology; Thysanoptera/classification*; Thysanoptera/growth & development; Forests
  9. Karin BR, Das I, Bauer AM
    Zootaxa, 2016 Mar 22;4093(3):407-23.
    PMID: 27394504 DOI: 10.11646/zootaxa.4093.3.7
    We describe two new species of skinks from Gunung Penrissen, Sarawak, Malaysia, in northern Borneo, Tytthoscincus batupanggah sp. nov. and T. leproauricularis sp. nov. Morphological and molecular analyses both corroborate the two new species as unique compared to all other Tytthoscincus and additional Sphenomorphus that are candidates for taxonomic placement in the genus Tytthoscincus. Despite their phenotypic similarity and sympatric distribution, a molecular analysis shows that the new species are not sister taxa and exhibit a deep genetic divergence between each of their respective sister taxa. We discuss how historical climatic and geographic processes may have led to the co-distribution of two relatively distantly related phenotypically similar species. In light of these discoveries, we also emphasize the importance of conserving primary montane tropical rainforest for maintaining species diversity.
    MeSH terms: Animals; Animal Structures/anatomy & histology; Animal Structures/growth & development; Female; Lizards/anatomy & histology; Lizards/classification*; Lizards/growth & development; Malaysia; Male; Organ Size; Phylogeny; Ecosystem; Genetic Drift; Body Size; Animal Distribution
  10. Dow RA, Afendy A, Rahman H
    Zootaxa, 2016 Apr 14;4103(4):390-5.
    PMID: 27394744 DOI: 10.11646/zootaxa.4103.4.7
    Telosticta fugispinosa sp. nov. (holotype male, from Borneo, Sabah, West Coast division, Crocker Range National Park, Inobong, Kimamabang waterfall stream system, 21 ix 2012, deposited in RMNH) is described from Kinabalu National Park and Crocker Range National Park in Sabah, Malaysian Borneo. It is distinguished from all other species of Telosticta by the form of the male anal appendages.
    MeSH terms: Parks, Recreational; Animals; Animal Structures/anatomy & histology; Animal Structures/growth & development; Borneo; Female; Malaysia; Male; Organ Size; Body Size; Animal Distribution; Odonata/anatomy & histology; Odonata/classification*; Odonata/growth & development
  11. Grismer LL, Wood PL, Anuar S, Grismer MS, Quah ES, Murdoch ML, et al.
    Zootaxa, 2016 Apr 25;4105(5):401-29.
    PMID: 27394789 DOI: 10.11646/zootaxa.4105.5.1
    A new species of limestone cave-adapted gecko of the Cyrtodactylus pulchellus complex, C. hidupselamanya sp. nov., is described from an isolated karst formation at Felda Chiku 7, Kelantan, Peninsular Malaysia. This formation is scheduled to be completely quarried for its mineral content. From what we know about the life history of C. hidupselamanya sp. nov., this will result in its extinction. A new limestone forest-adapted species, C. lenggongensis sp. nov., from the Lenggong Valley, Perak was previously considered to be conspecific with C. bintangrendah but a re-evaluation of morphological, color pattern, molecular, and habitat preference indicates that it too is a unique lineage worthy of specific recognition. Fortunately C. lenggongensis sp. nov. is not facing extinction because its habitat is protected by the UNESCO Archaeological Heritage of the Lenggong Valley due to the archaeological significance of that region. Both new species can be distinguished from all other species of Cyrtodactylus based on molecular evidence from the mitochondrial gene ND2 and its flanking tRNAs as well as having unique combinations of morphological and color pattern characteristics. Using a time-calibrated BEAST analysis we inferred that the evolution of a limestone habitat preference and its apparently attendant morphological and color pattern adaptations evolved independently at least four times in the C. pulchellus complex between 26.1 and 0.78 mya.
    MeSH terms: Adaptation, Physiological; Animals; Animal Structures/anatomy & histology; Animal Structures/growth & development; Calcium Carbonate; Biological Evolution; Female; Lizards/anatomy & histology; Lizards/classification*; Lizards/genetics; Lizards/physiology*; Malaysia; Male; Organ Size; Phylogeny; Ecosystem; Body Size; Genes, Mitochondrial; Animal Distribution; Forests
  12. Tan MK, Robillard T, Kamaruddin KN
    Zootaxa, 2016 May 02;4107(2):255-66.
    PMID: 27394817 DOI: 10.11646/zootaxa.4107.2.7
    Southeast Asia is a highly biodiverse region with many species of grasshoppers described since the 19th century. Historical species descriptions are however often not comprehensive and do not meet the modern criteria of taxonomy. Previously used characters for identification need to be re-examined. Here, we aim to revise the taxonomy of the grasshopper genus Sedulia Stål, 1878. Using morphology and simple morphometry, we compared and investigated interspecific and intraspecific variations among the two species of Sedulia. We also redescribed both species and constructed a key to species and closely related genera.
    MeSH terms: Animals; Female; Grasshoppers/anatomy & histology*; Grasshoppers/classification*; Grasshoppers/physiology; Malaysia; Male; Species Specificity; Animal Distribution
  13. Cobos A, Grismer LL, Wood PL, Quah ES, Anuar S, Muin MA
    Zootaxa, 2016 May 03;4107(3):367-80.
    PMID: 27394826 DOI: 10.11646/zootaxa.4107.3.5
    An integrative taxonomic analysis based on the mitochondrial gene ND2 and its flanking tRNAs, morphology, and color pattern indicates that a newly discovered gecko described herein as Hemiphyllodactylus cicak sp. nov. from Penang Hill on the Island of Penang, Peninsular Malaysia is a member of the H. harterti group. Hemiphyllodactylus cicak sp. nov. is most closely related to the clade composed of the sister species H. harterti from Bukit Larut, Perak in the Bintang Mountain Range and H. bintik from Gunung Tebu, Terengganu from the Timur Mountain Range. These three allopatric species form a monophyletic group that extends approximately 270 km across three isolated mountain ranges in northern Peninsular Malaysia. The molecular analysis also indicates that H. titiwangsaensis from the Titiwangsa Mountain Range is composed of three genetically distinct allopatric populations. The southern two populations from Fraser's Hill and Genting Highlands, Pahang have an uncorrected pairwise sequence divergence of 3.5% whereas these two populations have 12.4 and 12.8 % sequence divergences, respectively, from the northern population at Cameron Highlands, Pahang. Although the high sequence divergence clearly distinguishes the southern two populations from the former as a different species, all three populations are morphologically indistinguishable, leading to the hypothesis of a true, cryptic speciation event.
    MeSH terms: Animals; Lizards/anatomy & histology*; Lizards/classification*; Lizards/physiology; Malaysia; Phylogeny; Species Specificity; Genetic Speciation*; Animal Distribution*
  14. Cranston PS
    Zootaxa, 2016 May 09;4109(3):315-31.
    PMID: 27394867 DOI: 10.11646/zootaxa.4109.3.3
    The presence of the Afro-Australian genus Conochironomus Freeman, 1961 (Diptera: Chironomidae) in Asia has been recognised only informally. An unpublished thesis included Conochironomus from Singapore, and the genus has been keyed from Malaysia without named species. Here, the Sumatran Conochironomus tobaterdecimus (Kikuchi & Sasa, 1980) comb. n. is recorded from Singapore and Thailand. The species is transferred from Sumatendipes Kikuchi & Sasa, 1980, rendering the latter a junior synonym (syn. n.) of Conochironomus Freeman. Conochironomus nuengthai sp. n. and Conochironomus sawngthai sp. n. are described as new to science, based on adult males from Chiang Mai, Thailand. All species conform to existing generic diagnoses for all life stages, with features from male and female genitalia, pupal cephalic tubercles and posterolateral 'spurs' of tergite VIII providing evidence for species distinction. Some larvae are linked to C. tobaterdecimus through molecular barcoding. Variation in other larvae, which clearly belong to Conochironomus and are common throughout Thailand, means that they cannot be segregated to species. Larval habitats include pools in river beds, urban storage reservoirs, drains with moderately high nutrient loadings, and peat swamps. Endochironomus effusus Dutta, 1994 from north-eastern India may be a congener but may differ in adult morphology, thereby precluding formal new combination until discrepancies can be reconciled. Many problems with vouchering taxonomic and molecular material are identified that need to be rectified in the future.
    MeSH terms: Animals; Animal Structures/anatomy & histology; Animal Structures/growth & development; Asia; Chironomidae/anatomy & histology*; Chironomidae/classification*; Chironomidae/growth & development; Female; Larva/anatomy & histology; Larva/classification; Larva/growth & development; Male; Organ Size; Pupa/anatomy & histology; Pupa/classification; Pupa/growth & development; Ecosystem; Body Size; Animal Distribution
  15. Tan MK, Kamaruddin KN
    Zootaxa, 2016 May 12;4111(1):21-40.
    PMID: 27394894 DOI: 10.11646/zootaxa.4111.1.2
    Bukit Larut is a hill station at the southern tip of the Bintang Range, Perak of Peninsular Malaysia. While the biodiversity of Bukit Larut has been previously documented, its entomofauna, including the Orthoptera, remains relatively unknown. A faunistic survey was conducted in 2015 as part of the continuous exploration of the highlands in Malay Peninsula. An annotated species list of 71 (24 Caelifera and 47 Ensifera) species of Orthoptera from ten families (five from each order) is presented here. While the coverage of lineages in the orthopteran phylogeny is well-represented, the diversity in Bukit Larut is dominated by the three main families: Acrididae, Gryllidae and Tettigoniidae. Eight new locality records for Bukit Larut and/or Peninsular Malaysia and potential new species awaiting description highlight that the orthopteran diversity in Bukit Larut is not exhaustive.
    MeSH terms: Animals; Animal Structures/anatomy & histology; Animal Structures/growth & development; Female; Malaysia; Male; Organ Size; Orthoptera/anatomy & histology; Orthoptera/classification*; Orthoptera/growth & development; Biodiversity*; Body Size; Animal Distribution
  16. Bantaowong U, Chanabun R, James SW, Panha S
    Zootaxa, 2016;4117(1):63-84.
    PMID: 27395158 DOI: 10.11646/zootaxa.4117.1.3
    Earthworm specimens collected from various parts of Thailand were found to contain seven new species of the genus Metaphire Sims & Easton, 1972. These are M. songkhlaensis sp. n. in the octothecal pulauensis species group,                        M. trangensis sp. n. in the octothecal ignobilis species group, M. khaoluangensis sp. n. and M. khaochamao sp. n. in the sexthecal houlleti species group, M. doiphamon sp. n. in the sexthecal peguana species group, M. saxicalcis sp. n. in the quadrithecal planata species group, and the bithecal M. surinensis sp. n. Type material of some established species from Thailand or northern Malaysia was reinvestigated and illustrated to confirm the status of the new species and to facilitate species comparisons: M. pulauensis (Beddard, 1900), M. baruana (Stephenson, 1932), both with newly designated         lectotypes, and M. planata (Gates, 1936), illustrated and redescribed.
    MeSH terms: Animals; Malaysia; Oligochaeta; Thailand; Body Size; Animal Distribution
  17. Sinev AY, Yusoff FM
    Zootaxa, 2016 Jun 01;4117(3):399-410.
    PMID: 27395182 DOI: 10.11646/zootaxa.4117.3.7
    Study of Ephemeroporus Frey, 1982 populations from Peninsular Malaysia revealed a new species. Ephemeroporus malaysiaensis sp. nov. is characterized by the presence of four-five large denticles on anal margin of postabdomen instead of two-three, and five distinctive pigmented spots on each valve. Pigmented spots on the valves were never recorded for any species of family Chydoridae. E. malaysiaensis sp. nov. seems to be another endemic Chydoridae species of South-East Asia. E. malaysiaensis sp. nov. is a rare species, associated with emergent macrophytes in the littoral zone of shallow lake. Most of Ephemeroporus populations from Peninsular Malaysia belong to eurybiotic Paleotropical species Ephemeroporus barroisi (Richard, 1984).
    MeSH terms: Animals; Animal Structures/anatomy & histology; Animal Structures/growth & development; Female; Malaysia; Male; Organ Size; Ecosystem; Cladocera/anatomy & histology; Cladocera/classification*; Cladocera/growth & development; Body Size; Animal Distribution
  18. Tong X, Wang Z, Mirab-Balou M
    Zootaxa, 2016 Jan 05;4061(2):181-8.
    PMID: 27395492 DOI: 10.11646/zootaxa.4061.2.8
    Two new species of the genus Asprothrips Crawford, A. bucerus sp. n. and A. punctulosus sp. n. are described and illustrated from China. A. bimaculatus Michel & Ryckewaert, previously known only from Martinique in the French West Indies and Malaysia, is newly recorded from mainland China and Taiwan, along with the first descriptive notes of the male, and the record from China of A. fuscipennis Kudô is considered a misidentification of A. bucerus sp. n. The generic diagnosis of Asprothrips is briefly summarized and an updated key to world species of the genus is also presented.
    MeSH terms: Animals; Animal Structures/anatomy & histology; Animal Structures/growth & development; China; Female; Malaysia; Male; Organ Size; Taiwan; Body Size; Thysanoptera/anatomy & histology; Thysanoptera/classification*; Thysanoptera/growth & development; Animal Distribution
  19. Tan MK, Kamaruddin KN
    Zootaxa, 2016 Jan 19;4066(5):552-60.
    PMID: 27395853 DOI: 10.11646/zootaxa.4066.5.3
    A new species of Gryllotalpa mole cricket (Orthoptera: Gryllotalpidae) is described from Bukit Larut, Perak, Peninsular Malaysia: Gryllotalpa permai sp. n. Acoustic analysis of the male calling songs were also provided for Gryllotalpa permai sp. n. and the morphologically similar Gryllotalpa fulvipes.
    MeSH terms: Animals; Animal Structures/anatomy & histology; Animal Structures/growth & development; Gryllidae/anatomy & histology; Gryllidae/classification*; Gryllidae/growth & development; Gryllidae/physiology; Malaysia; Male; Organ Size; Vocalization, Animal; Body Size; Animal Distribution
  20. Cabra-García J, Brescovit AD
    Zootaxa, 2016 Jan 27;4069(1):1-183.
    PMID: 27395905 DOI: 10.11646/zootaxa.4069.1.1
    A taxonomic revision and phylogenetic analysis of the spider genus Glenognatha Simon, 1887 is presented. This analysis is based on a data set including 24 Glenognatha species plus eight outgroups representing three related tetragnathine genera and one metaine as the root. These taxa were scored for 78 morphological characters. Parsimony was used as the optimality criterion and a sensitivity analysis was performed using different character weighting concavities. Seven unambiguous synapomorphies support the monophyly of Glenognatha. Some internal clades within the genus are well-supported and its relationships are discussed. Glenognatha as recovered includes 27 species, four of them only known from males. A species identification key and distribution maps are provided for all. New morphological data are also presented for thirteen previously described species. Glenognatha has a broad distribution occupying the Neartic, Afrotropic, Indo-Malaya, Oceania and Paleartic regions, but is more diverse in the Neotropics. The following eleven new species are described: G. vivianae n. sp., G. caaguara n. sp., G. boraceia n. sp. and G. timbira n. sp. from southeast Brazil, G. caparu n. sp., G. januari n. sp. and G. camisea n. sp. from the Amazonian region, G. mendezi n. sp., G. florezi n. sp. and G. patriceae n. sp. from northern Andes and G. gouldi n. sp. from Southern United States and central Mexico. Females of G. minuta Banks, 1898, G. gaujoni Simon, 1895 and G. gloriae (Petrunkevitch, 1930) and males of G. globosa (Petrunkevitch, 1925) and G. hirsutissima (Berland, 1935) are described for the first time. Three new combinations are proposed in congruence with the phylogenetic results: G. argyrostilba (O. P.-Cambridge, 1876) n. comb., G. dentata (Zhu & Wen, 1978) n. comb. and G. tangi (Zhu, Song & Zhang, 2003) n. comb., all previously included in Dyschiriognatha Simon, 1893. The following taxa are newly synonymized: Dyschiriognatha montana Simon, 1897, Glenognatha mira Bryant, 1945 and Glenognatha maelfaiti Baert, 1987 with Glenognatha argyrostilba (Pickard-Cambridge, 1876) and Glenognatha centralis Chamberlin, 1925 with Glenognatha minuta Banks, 1898.
    MeSH terms: Animals; Animal Structures/anatomy & histology; Animal Structures/growth & development; Brazil; Female; Malaysia; Male; Mexico; Organ Size; Phylogeny*; Spiders/anatomy & histology; Spiders/classification*; Spiders/genetics; Spiders/growth & development; Ecosystem; Body Size; Animal Distribution
External Links