METHODS: In this double-blind, randomized controlled trial, SCA3 patients received either 100 g oral trehalose or 30 g maltose to improve ataxia severity over six months. We also measured other clinical (non-ataxia), patient-reported (quality of life, motivations), and safety endpoints. An unscheduled interim analysis was conducted using two-way ANOVAs to analyze the interaction between time (baseline, 3-months, 6-months) and intervention (Trehalose vs. Placebo).
RESULTS: Fifteen participants (Trehalose = 7 vs. Placebo = 8) completed the study at the time of interim analysis. There was no interaction effect on the ataxia severity, and available data suggested an estimated sample size of 132 (66 per arm) SCA3 patients required to demonstrate changes in a 6-month trial. There were significant interaction effects for executive function (ƞ2 = 0.28-0.43). Safety data indicated that 100 g oral trehalose was well-tolerated.
CONCLUSION: We performed an unplanned interim analysis due to a slow recruitment rate. The new estimated sample size was deemed unfeasible, leading to premature termination of the clinical trial. In this small, current sample of SCA3 patients, 100 g oral trehalose did not differentially impact on ataxia severity compared to placebo. Interestingly, our findings may suggest an improvement in executive function. Future efforts will require a large multi-country, multi-center study to investigate the potential effect of trehalose.
PURPOSE: To explore the role of paternal support in EBF failure among 3-month-old infants.
METHODS: This sequential mixed-methods study, part of an ongoing cohort study in West Java in early 2022, included 225 infants. The parents of 3-month-old infants were interviewed. Paternal support was assessed using a 15-point validated questionnaire for a total score of 15-60 points. Multivariate binary regression was used to determine adjusted odds ratios (aORs). The qualitative exploration was based on in-depth interviews (IDIs) and forum group discussions (FGDs) following the quantitative survey.
RESULTS: Of the 225 infants, 52.2% were no longer EBF. High paternal support (greater than the mean score) of breastfeeding was determined in 52.9% of cases (mean± standard deviation, 38.7±6.7 for the overall population vs. 37.5±6.3 and 40.2±6.8 for infants who were and were not EBF at 3 months of age, respectively). Low paternal support was associated with an increased EBF failure rate (aOR, 2.84; 95% confidence interval [CI], 1.46-5.54). Other variables that remained as predictors in the final model were a low birth rate (aOR, 7.35; 95% CI, 1.73-31.20), negative maternal attitude (aOR, 3.31; 95% CI, 1.63-6.75), lower self-efficacy (aOR, 4.82; 95% CI, 2.43-9.57), and lower maternal education level (aOR, 2.87; 95% CI, 1.03- 8.03). The IDIs and FGD observed the importance of the father's support of the mother and EBF. The qualitative exploration revealed a lack of knowledge about EBF as a parental support barrier.
CONCLUSION: Paternal support is important for EBF. Paternal involvement in EBF planning encouraged themother to continue. Plans that include fathers in breastfeeding education may help increase paternal support.
PURPOSE: To compare and correlate technetium-99m methylene diphosphonate uptake between benign and metastatic bone lesions using semiquantitative analysis of maximum standard uptake value (SUVmax) and mean Hounsfield unit (HU) in single-photon emission computed tomography-computed tomography (SPECT-CT).
OVERVIEW OF LITERATURE: Qualitative interpretation of metastatic bone lesions in breast cancer on bone scintigraphy is often complicated by coexisting benign lesions.
METHODS: In total, 185 lesions were identified on bone and SPECT-CT scans from 32 patients. Lesions were classified as metastatic (109 sclerotic lesions) and benign (76 lesions) morphologically on low-dose CT. Semiquantitative analysis using SUVmax and mean HU was performed on the lesions and compared. To discriminate benign and metastatic lesions, the correlation between SUVmax and mean HU was determined using the intraclass correlation coefficients.
RESULTS: The SUVmax was higher in metastatic lesions (20.66±14.36) but lower in benign lesions (10.18±12.79) (p<0.001). The mean HU was lower in metastatic lesions (166.62±202.02) but higher in benign lesions (517.65±192.8) (p<0.001). A weak negative correlation was found between the SUVmax and the mean HU for benign lesions, and a weak positive correlation was noted between the SUVmax and the mean HU on malignant lesions with no statistical significance (p=0.394 and 0.312, respectively). The cutoff values obtained were 10.8 for SUVmax (82.6% sensitivity and 84.2% specificity) and 240.86 for the mean HU (98.7% sensitivity and 88.1% specificity) in differentiating benign from malignant bone lesions.
CONCLUSIONS: Semiquantitative assessment using SUVmax and HU can complement qualitative analysis. Metastatic lesions had higher SUVmax but lower mean HU than benign lesions, whereas benign lesions demonstrated higher mean HU but lower SUVmax. A weak correlation was found between the SUVmax and the mean HU on malignant and benign lesions. Cutoff values of 10.8 for the SUVmax and 240.86 for the mean HU may differentiate bone metastases from benign lesions.
METHODS: A systematic search of databases was conducted according to the PRISMA guidelines. Articles reporting sex distribution and age of onset for AQP4 antibody-associated NMSOD were reviewed. An initially inclusive approach involving exploration with regression meta-analysis was followed by an analysis of just AQP4 antibody positive cases.
RESULTS: A total of 528 articles were screened to yield 89 articles covering 19,415 individuals from 88 population samples. The female:male sex ratio was significantly influenced by the proportion of AQP4 antibody positive cases in the samples studied (p
METHODS: A detailed search of PubMed, EMBASE, Scopus, Web of Science, MEDLINE, and CINAHL Plus databases, was conducted, encompassing observational studies published from 1991 to 2023. Original studies examining the relationship between increasing temperature and allergic rhinitis were assessed for eligibility followed by a risk of bias assessment. Random effects meta-analysis was utilized to measure the association between a 1 °C increase in temperature and allergic rhinitis-related outcomes.
RESULTS: 20 studies were included in the qualitative synthesis, with nine of them subsequently selected for the quantitative synthesis. 20 included studies were rated as Level 4 evidence according to the Oxford Centre for Evidence-Based Medicine, and the majority of these reported good-quality evidence based on the Newcastle-Ottawa Quality Rating Scale. Using the Risk of Bias In Non-Randomized Studies of Exposure tool, the majority of studies exhibit a high risk of bias. Every 1 °C increase in temperature significantly raised the risk of allergic rhinitis-related outcomes by 29 % (RR = 1.26, 95 % CI: 1.11 to 1.50). Conversely, every 1 °C rise in temperature showed no significant increase in the odds of allergic rhinitis-related outcomes by 7 % (OR = 1.07, 95 % CI: 0.95 to 1.21). Subsequent subgroup analysis identified climate zone as an influential factor influencing this association.
CONCLUSION: It is inconclusive to definitively suggest a harmful effect of increasing temperature exposure on allergic rhinitis, due overall very low certainty of evidence. Further original research with better methodological quality is required.