Affiliations 

  • 1 Department of Biotechnology & Genetic Engineering, University of Development Alternative, Lalmatia, Dhaka, Bangladesh
  • 2 School of Allied Health Sciences, World Union for Herbal Drug Discovery (WUHeDD) and Research Excellence Center for Innovation and Health Products (RECIHP), Walailak University, Nakhon Si Thammarat, Thailand
  • 3 CICECO-Aveiro Institute of Materials & Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
  • 4 School of Pharmacy, University of Nottingham Malaysia Campus, Selangor, Malaysia
Trop Biomed, 2021 Dec 01;38(4):540-551.
PMID: 35001920 DOI: 10.47665/tb.38.4.097

Abstract

Despite the huge loss of lives and massive disruption of the world economy by the COVID -19 pandemic caused by SARS -CoV-2, scientists are yet to come out with an effective therapeutic against this viral disease . Several vaccines have obtained 'emergency approval ', but difficulties are being faced in the even distribution of vaccines amongst high- and low- income countries . On top of it, comorbidities associated with COVID -19 like diabetes, hypertension and malaria can seriously impede the treatment of the main disease, thus increasing the fatality rate . This is more so in the context of sub -Saharan African and south Asian countries . Our objective was to demonstrate that a single plant containing different phytoconstituents may be used for treatment of COVID -19 and comorbidities . Towards initial selection of a plant, existing scientific literature was scanned for reported relevant traditional uses, phytochemicals and pharmacological activities of a number of plants and their phytoconstituents pertaining to treatment of COVID-19 symptoms and comorbidities. Molecular docking studies were then performed with phytochemicals of the selected plant and SARS-CoV-2 components - Mpro, and spike protein receptor binding domain and hACE2 interface using AutoDock V ina. We showed that crude extracts of an indigenous African plant, Costus afer having traditional antidiabetic and antimalarial uses, has phytochemicals with high binding affinities for Mpro, and /or spike protein receptor binding domain and hACE2 interface; the various phytochemicals with predicted high binding energies include aferoside C, dibutyl phthalate, nerolidol, suginal, and ± -terpinene, making them potential therapeutics for COVID -19. The results suggest that crude extracts and phytochemicals of C. afer can function as a treatment modality for COVID -19 and comorbidities like especially diabetes and malaria .

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.