Affiliations 

  • 1 Restorative Division, School of Dentistry, International Medical University Kuala Lumpur, 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Wilayah Persekutuan Kuala Lumpur, Malaysia
  • 2 Department of Oral Biology, Post Graduate Medical Institute: Lahore, Pakistan
  • 3 Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University; Dammam, Saudi Arabia
  • 4 Pharmaceutical Chemistry, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
  • 5 Clinical Oral Health Sciences Division, School of Dentistry, International Medical University Kuala Lumpur, 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Wilayah Persekutuan Kuala Lumpur, Malaysia
Heliyon, 2023 Aug;9(8):e19282.
PMID: 37664740 DOI: 10.1016/j.heliyon.2023.e19282

Abstract

OBJECTIVES: Successful root canal therapy is dependent on the efficacy of complete instrumentation and adequate use of chemical irrigant to eliminate the biofilm from dentin surface. The aim of the study was to examine antibiofilm and antimicrobial effectiveness of newly formulated Quaternary ammonium silane (QAS/also codenamed K21; against Fusobacterium nucleatum (F. nucleatum) and Enterococcus faecalis (E. faecalis) biofilm on radicular dentin with evaluation of the anti-inflammatory consequence in vivo.

METHODS: Fourier Transform Infrared Spectroscopy (FTIR) was performed after complete hydrolysis of K21 solution. Human teeth were inoculated with biofilms for 7-days followed by treatment with various irrigants. The irrigant groups were Sodium hypochlorite [NaOCl (6%)], Chlorhexidine [CHX (2%)], K21 (0.5%), K21 (1%) and Saline. Scanning electron microscopy (SEM) was performed for biofilm and resin-dentin penetration. Transmission Electron Microscopy (TEM) of biofilms was done to evaluate application of K21. For in vivo evaluation, Albino wistar rats were injected subcutaneously and sections were stained with haematoxylin/eosin. Macrophage, M1/M2 expression were evaluated along with molecular simulation. Raman measurements were done on dried biofilms.

RESULTS: FTIR K21 specimens demonstrated presence of ethanol/silanol groups. Raman band at 1359 cm-1 resemble to -CH2- wagging displaying 29Si atoms in Nuclear Magnetic Resonance (NMR). 0.5%K21 showed cells exhibiting folded membranes. SEM showed staggering amount of resin tags with 0.5% K21 group. TEM showed membrane disruption in K21-groups. K21 groups were initially irritant, which subsided completely afterwards showing increased CD68. K21 and MMP/collagen complex was thermodynamically favourable.

CONCLUSION: K21 root canal irrigant was able to penetrate bacterial wall and can serve as a potential irrigant for therapeutic benefits. Expression of M2 polarized subsets showed K21 can serve in resolving inflammation and potentiate tissue repair.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.