Displaying all 15 publications

Abstract:
Sort:
  1. Chaubal TV, Bapat RA
    N Engl J Med, 2017 Sep 21;377(12):1188.
    PMID: 28930502 DOI: 10.1056/NEJMicm1701886
  2. Arora S, Bapat RA, Chaubal T
    Am J Med Sci, 2018 12;356(6):e43.
    PMID: 30278877 DOI: 10.1016/j.amjms.2018.07.009
  3. Bapat RA, Chaubal TV, Joshi CP, Bapat PR, Choudhury H, Pandey M, et al.
    Mater Sci Eng C Mater Biol Appl, 2018 Oct 01;91:881-898.
    PMID: 30033323 DOI: 10.1016/j.msec.2018.05.069
    Oral cavity is a gateway to the entire body and protection of this gateway is a major goal in dentistry. Plaque biofilm is a major cause of majority of dental diseases and although various biomaterials have been applied for their cure, limitations pertaining to the material properties prevent achievement of desired outcomes. Nanoparticle applications have become useful tools for various dental applications in endodontics, periodontics, restorative dentistry, orthodontics and oral cancers. Off these, silver nanoparticles (AgNPs) have been used in medicine and dentistry due to its antimicrobial properties. AgNPs have been incorporated into biomaterials in order to prevent or reduce biofilm formation. Due to greater surface to volume ratio and small particle size, they possess excellent antimicrobial action without affecting the mechanical properties of the material. This unique property of AgNPs makes these materials as fillers of choice in different biomaterials whereby they play a vital role in improving the properties. This review aims to discuss the influence of addition of AgNPs to various biomaterials used in different dental applications.
  4. Alkahtani ZM, Arunachalam R, Bapat RA, Thangavelu A, Jegatheeswaran AG
    J Pharm Bioallied Sci, 2021 Jun;13(Suppl 1):S865-S867.
    PMID: 34447217 DOI: 10.4103/jpbs.JPBS_622_20
    Desquamative gingivitis is described as an erythematous, desquamated gingival lesion. There are many etiologic factors for the appearance of such lesions. The aim of this case report is to diagnose the cause of the lesion by analyzing the complete medical, dental, and personal histories. An elaborated differential diagnosis is done, and the lesion is successfully treated accordingly. The gold standard treatment is usually provided by systemic or topical corticosteroids. Another treatment option is antioxidant therapy which provides rapid healing of the tissue.
  5. Paroha S, Verma J, Dubey RD, Dewangan RP, Molugulu N, Bapat RA, et al.
    Int J Pharm, 2021 Jan 05;592:120043.
    PMID: 33152476 DOI: 10.1016/j.ijpharm.2020.120043
    Cancer is a community health hazard which progress at a fatal rate in various countries across the globe. An agent used for chemotherapy should exhibit ideal properties to be an effective anticancer medicine. The chemotherapeutic medicines used for treatment of various cancers are, gemcitabine, paclitaxel, etoposide, methotrexate, cisplatin, doxorubicin and 5-fluorouracil. However, many of these agents present nonspecific systemic toxicity that prevents their treatment efficiency. Of all, gemcitabine has shown to be an active agent against colon, pancreatic, colon, ovarian, breast, head and neck and lung cancers in amalgamation with various anticancer agents. Gemcitabine is considered a gold-standard and the first FDA approved agent used as a monotherapy in management of advanced pancreatic cancers. However due to its poor pharmacokinetics, there is need of newer drug delivery system for efficient action. Nanotechnology has shown to be an emerging trend in field of medicine in providing novel modalities for cancer treatment. Various nanocarriers have the potential to deliver the drug at the desired site to obtain information about diagnosis and treatment of cancer. This review highlights on various nanocarriers like polymeric nanoparticles, solid lipid nanoparticles, mesoporous silica nanoparticles, magnetic nanoparticles, micelles, liposomes, dendrimers, gold nanoparticles and combination approaches for delivery of gemcitabine for cancer therapy. The co-encapsulation and concurrent delivery of Gem with other anticancer agents can enhance drug action at the cancer site with reduced side effects.
  6. Bapat RA, Chaubal TV, Dharmadhikari S, Abdulla AM, Bapat P, Alexander A, et al.
    Int J Pharm, 2020 Aug 30;586:119596.
    PMID: 32622805 DOI: 10.1016/j.ijpharm.2020.119596
    Major goal of dental treatment is to eradicate the existing diseases of the oral cavity and implement preventive measures to control the spread of the diseases. Various interventions are being used to cure the dental diseases. Due to the nanostructures, high surface volume and biocompatibility, Gold nanoparticles (GNPs) have been experimented in the treatment of gum diseases, dental caries, tissue engineering, dental implantology and diagnosis of cancers. GNPs possess antifungal and antibacterial activity, hence are incorporated in various biomaterials to potentiate the effect. They also enhance the mechanical properties of materials leading to improved outcomes. They are available in different sizes and concentrations to exhibits its beneficial outcomes. These properties of GNPs make these materials as choice of fillers in biomaterials. This review aims to discuss the effect of incorporation of GNPs in several biomaterials used for dental and medical applications.
  7. Dubey SK, Parab S, Dabholkar N, Agrawal M, Singhvi G, Alexander A, et al.
    Drug Discov Today, 2021 04;26(4):931-950.
    PMID: 33444788 DOI: 10.1016/j.drudis.2021.01.001
    Peptides and proteins have emerged as potential therapeutic agents and, in the search for the best treatment regimen, the oral route has been extensively evaluated because of its non-invasive and safe nature. The physicochemical properties of peptides and proteins along with the hurdles in the gastrointestinal tract (GIT), such as degrading enzymes and permeation barriers, are challenges to their delivery. To address these challenges, several conventional and novel approaches, such as nanocarriers, site-specific and stimuli specific delivery, are being used. In this review, we discuss the challenges to the oral delivery of peptides and the approaches used to tackle these challenges.
  8. Bapat RA, Joshi CP, Bapat P, Chaubal TV, Pandurangappa R, Jnanendrappa N, et al.
    Drug Discov Today, 2019 01;24(1):85-98.
    PMID: 30176358 DOI: 10.1016/j.drudis.2018.08.012
    Maintenance of oral health is a major challenge in dentistry. Different materials have been used to treat various dental diseases, although treatment success is limited by features of the biomaterials used. To overcome these limitations, materials incorporated with nanoparticles (NPs) can be used in dental applications including endodontics, periodontics, tissue engineering, oral surgery, and imaging. The unique properties of NPs, including their surface:volume ratio, antibacterial action, physical, mechanical, and biological characteristics, and unique particle size have rendered them effective vehicles for dental applications. In this review, we provide insights into the various applications of NPs in dentistry, including their benefits, limitations, properties, actions and future potential.
  9. Bapat RA, Dharmadhikari S, Chaubal TV, Amin MCIM, Bapat P, Gorain B, et al.
    Heliyon, 2019 Oct;5(10):e02544.
    PMID: 31687479 DOI: 10.1016/j.heliyon.2019.e02544
    Dendrimers are hyperbranched nanoparticle structures along with its surface modifications can to be used in dental biomaterials for biomimetic remineralisation of enamel and dentin. The review highlights the therapeutic applications of dendrimers in the field of dentistry. It addresses the possible mechanisms of enhancement of mechanical properties of adhesives and resins structure. Dendrimers due to its unique construction of possessing inner hydrophobic and outer hydrophilic structure can act as drug carrier for delivery of antimicrobial drugs for treatment of periodontal diseases and at peripheral dental implant areas. Dendrimers due to its hyperbranched structures can provides a unique drug delivery vehicle for delivery of a drug at specific site for sustained release for therapeutic effects. Thus, dendrimers can be one of the most important constituents which can be incorporated in dental biomaterials for better outcomes in dentistry.
  10. Bapat RA, Parolia A, Chaubal T, Dharamadhikari S, Abdulla AM, Sakkir N, et al.
    Biomater Sci, 2021 May 04;9(9):3244-3283.
    PMID: 33949464 DOI: 10.1039/d1bm00233c
    Dental treatment is provided for a wide variety of oral health problems like dental caries, periodontal diseases, periapical infections, replacement of missing teeth and orthodontic problems. Various biomaterials, like composite resins, amalgam, glass ionomer cement, acrylic resins, metal alloys, impression materials, bone grafts, membranes, local anaesthetics, etc., are used for dental applications. The physical and chemical characteristics of these materials influence the outcome of dental treatment. It also impacts on the biological, allergic and toxic potential of biomaterials. With innovations in science and their positive results, there is also a need for awareness about the biological risks of these biomaterials. The aim of dental treatment is to have effective, yet safe, and long-lasting results for the benefit of patients. For this, it is important to have a thorough understanding of biomaterials and their effects on local and systemic health. Materials used in dentistry undergo a series of analyses before their oral applications. To the best of our knowledge, this is the first and original review that discusses the reasons for and studies on the toxicity of commonly used biomaterials for applications in dentistry. It will help clinicians to formulate a methodical approach for the selection of dental biomaterials, thus providing an awareness for forecasting their risk of toxic reactions.
  11. Daood U, Bapat RA, Sidhu P, Ilyas MS, Khan AS, Mak KK, et al.
    Dent Mater, 2021 10;37(10):1511-1528.
    PMID: 34420798 DOI: 10.1016/j.dental.2021.08.001
    OBJECTIVES: The aim of the current project was to study the antimicrobial efficacy of a newly developed irrigant, k21/E against E. faecalis biofilm.

    METHODS: Root canals were instrumented and randomly divided into the following groups: irrigation with saline, 6% NaOCl (sodium hypochlorite), 6% NaOCl+2% CHX (Chlorhexidine), 2% CHX, 0.5% k21/E (k21 - quaternary ammonium silane) and 1% k21/E. E. faecalis were grown (3-days) (1×107CFU mL-1), treated, and further cultured for 11-days. Specimens were subjected to SEM, confocal and Raman analysis and macrophage vesicles characterized along with effect of lipopolysaccharide treatment. 3T3 mouse-fibroblasts were cultured for alizarin-red with Sortase-A active sites and Schrödinger docking was performed. TEM analysis of root dentin substrate with matrix metalloproteinases profilometry was also included. A cytotoxic test analysis for cell viability was measured by absorbance of human dental pulp cells after exposure to different irrigant solutions for 24h. The test percentages have been highlighted in Table 1.

    RESULTS: Among experimental groups, irrigation with 0.5% k21/E showed phase separation revealing significant bacterial reduction and lower phenylalanine 1003cm-1 and Amide III 1245cm-1 intensities. Damage was observed on bacterial cell membrane after use of k21/E. No difference in exosomes distribution between control and 0.5%k21/E was observed with less TNFα (*p<0.05) and preferential binding of SrtA. TEM images demonstrated integrated collagen fibers in control and 0.5%k21/E specimens and inner bacterial membrane damage after k21/E treatment. The k21 groups appeared to be biocompatible to the dental pulpal cells grown for 24h.

    SIGNIFICANCE: Current investigations highlight potential advantages of 0.5% k21/E as irrigation solution for root canal disinfection.

Filters
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links