Affiliations 

  • 1 Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, 01000 Kangar, Perlis, Malaysia
  • 2 Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, 01000 Kangar, Perlis, Malaysia. Electronic address: azizahparmin@unimap.edu.my
  • 3 Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, 01000 Kangar, Perlis, Malaysia; Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis, 02600 Arau, Perlis, Malaysia
  • 4 Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, 01000 Kangar, Perlis, Malaysia; Institute of Microengineering and Nanoelectronics, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia; Micro System Technology, Centre of Excellence (CoE), Universiti Malaysia Perlis (UniMAP), Pauh Campus, 02600 Arau, Perlis, Malaysia; Department of Computer Science and Engineering, Faculty of Science and Information Technology, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka 1216, Bangladesh
  • 5 Department of Obstetrics and Gynaecology (O&G), Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, 43400, UPM, Serdang, Selangor
  • 6 School of Materials & Mineral Resources Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Pulau Pinang, Malaysia
  • 7 School of Materials & Mineral Resources Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Pulau Pinang, Malaysia; NanoBiotechnology Research and Innovation (NanoBRI), Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Penang, Malaysia
Int J Biol Macromol, 2023 Dec 31;253(Pt 2):126745.
PMID: 37689297 DOI: 10.1016/j.ijbiomac.2023.126745

Abstract

Genosensor-based electrodes mediated with nanoparticles (NPs) have tremendously developed in medical diagnosis. Herein, we report a facile, rapid, low cost and highly sensitive biosensing strategy for early detection of HPV 18 using gold-nanoparticles (AuNPs) deposited on micro-IDEs. This study represents surface charge transduction of micro-interdigitated electrodes (micro-IDE) alumina insulated with silica, independent and mini genosensor modified with colloidal gold NPs (AuNPs), and determination of gene hybridization for early detection of cervical cancer. The surface of AuNPs deposited micro-IDE functionalized with optimized 3-aminopropyl-triethoxysilane (APTES) followed by hybridization with deoxyribonucleic acid (DNA) virus to develop DNA genosensor. The results of ssDNA hybridization with the ssDNA target of human papillomavirus (HPV) 18 have affirmed that micro-IDE functionalized with colloidal AuNPs resulted in the lowest detection at 0.529 aM. Based on coefficient regression, micro-IDE functionalized with AuNPs produces better results in the sensitivity test (R2 = 0.99793) than unfunctionalized micro-IDE.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.