Affiliations 

  • 1 Cancer Research Malaysia, Subang Jaya, Malaysia. jiawern.pan@cancerresearch.my
  • 2 Cancer Research Malaysia, Subang Jaya, Malaysia
  • 3 Roche Services (Asia Pacific), The Pinnacle, Bandar Sunway, Subang Jaya, Malaysia
  • 4 Department of Surgery, Faculty of Medicine, University Malaya, Kuala Lumpur, Malaysia
  • 5 Subang Jaya Medical Centre, Subang Jaya, Malaysia
  • 6 Department of Pathology, Faculty of Medicine, University Malaya, Kuala Lumpur, Malaysia
  • 7 Cancer Research UK, Cambridge Institute & Department of Oncology, Li Ka Shing Centre, Robinson Way, Cambridge, UK
NPJ Breast Cancer, 2024 Jul 19;10(1):60.
PMID: 39030225 DOI: 10.1038/s41523-024-00671-1

Abstract

Triple-negative breast cancers (TNBCs) are a subset of breast cancers that have remained difficult to treat. A proportion of TNBCs arising in non-carriers of BRCA pathogenic variants have genomic features that are similar to BRCA carriers and may also benefit from PARP inhibitor treatment. Using genomic data from 129 TNBC samples from the Malaysian Breast Cancer (MyBrCa) cohort, we developed a gene expression-based machine learning classifier for homologous recombination deficiency (HRD) in TNBCs. The classifier identified samples with HRD mutational signature at an AUROC of 0.93 in MyBrCa validation datasets and 0.84 in TCGA TNBCs. Additionally, the classifier strongly segregated HRD-associated genomic features in TNBCs from TCGA, METABRIC, and ICGC. Thus, our gene expression classifier may identify triple-negative breast cancer patients with homologous recombination deficiency, suggesting an alternative method to identify individuals who may benefit from treatment with PARP inhibitors or platinum chemotherapy.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.