Affiliations 

  • 1 Institute of Systems Biology, Universiti Kebangsaan Malaysia (UKM), Bangi, Selangor 43600 UKM, Malaysia
  • 2 Bioinformatics Unit, FGV R&D Sdn. Bhd., FGV Innovation Centre, PT23417 Lengkuk Teknologi,Bandar Enstek, Nilai, Negeri Sembilan 71760, Malaysia
  • 3 Department of Crop Protection & Bio Solution, FGV R&D Sdn. Bhd., PPP Tun Razak, Jengka, Pahang 26400, Malaysia
  • 4 Centre for Insect Systematics, Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi, Selangor 43600 UKM, Malaysia
  • 5 Institute of Systems Biology, Universiti Kebangsaan Malaysia (UKM), Bangi, Selangor 43600 UKM, Malaysia; Bioinformatics and Molecular Simulations Group, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
  • 6 Institute of Systems Biology, Universiti Kebangsaan Malaysia (UKM), Bangi, Selangor 43600 UKM, Malaysia; Systems and Synthetic Biology Group, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia. Electronic address: maizom@ukm.edu.my
Comput Biol Chem, 2024 Oct;112:108176.
PMID: 39181100 DOI: 10.1016/j.compbiolchem.2024.108176

Abstract

Metisa plana is a widespread insect pest infesting oil palm plantations in Malaysia. Farnesyl acetate (FA), a juvenile hormone analogue, has been reported to exert in vitro and in vivo insecticidal activity against other insect pests. However, the insecticidal mechanism of FA on M. plana remains unclear. Therefore, this study aims to elucidate responsive genes in M. plana in response to FA treatment. The RNA-sequencing reads of FA-treated M. plana were de novo-assembled with existing raw reads from non-treated third instar larvae, and 55,807 transcripts were functionally annotated to multiple protein databases. Several insecticide detoxification-related genes were differentially regulated among the 321 differentially expressed transcripts. Cytochrome P450 monooxygenase, carboxylesterase, and ATP-binding cassette protein were upregulated, while peptidoglycan recognition protein was downregulated. Innate immune response genes, such as glutathione S-transferases, acetylcholinesterase, and heat shock protein, were also identified in the transcriptome. The findings signify that changes occurred in the insect's receptor and signaling, metabolic detoxification of insecticides, and immune responses upon FA treatment on M. plana. This valuable information on FA toxicity may be used to formulate more effective biorational insecticides for better M. plana pest management strategies in oil palm plantations.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.