Electromagnetic (EM) waves transmitted by Horizontal Electric Dipole (HED) source to detect contrasts in subsurface resistivity termed Seabed Logging (SBL) is now an established method for hydrocarbon exploration. However, currently used EM wave detectors for SBL have several challenges including the sensitivity and its bulk size. This work exploits the benefit of superconductor technology in developing a magnetometer termed Superconducting Quantum Interference Device (SQUID) which can potentially be used for SBL. A SQUID magnetometer was fabricated using hexagon shape-niobium wire with YBa2Cu37O, (YBCO) as a barrier. The YBa2Cu37O, samples were synthesized by sol-gel method and were sintered using a furnace and conventional microwave oven. The YBCO gel was dried at 120 degrees C in air for 72 hours. It was then ground and divided into 12 parts. Four samples were sintered at 750 degrees C, 850 degrees C, 900 degrees C, and 950 degrees C for 12 hours in a furnace to find the optimum temperature. The other eight samples were sintered in a microwave with 1100 Watt (W) with a different sintering time, 5, 15, 45 minutes, 1 hour, 1 hour 15 minutes, 1 hour 30 minutes, 1 hour 45 minutes and 2 hours. A DEWAR container was designed and fabricated using fiberglass material. It was filled with liquid nitrogen (LN2) to ensure the superconducting state of the magnetometer. XRD results showed that the optimum sintering temperature for the formation of orthorhombic Y-123 phase was at 950 degrees C with the crystallite size of 67 nm. The morphology results from Field Emission Scanning Electron Microscopy (FESEM) showed that the grains had formed a rod shape with an average diameter of 60 nm. The fabricated SQUID magnetometer was able to show an increment of approximately 249% in the intensity of the EM waves when the source receiver offset was one meter apart.
* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.