Displaying publications 1 - 20 of 189 in total

  1. Rahman A, Islam MT, Singh MJ, Kibria S, Akhtaruzzaman M
    Sci Rep, 2016 12 23;6:38906.
    PMID: 28008923 DOI: 10.1038/srep38906
    In this paper, we report a compact and ultra-wide band antenna on a flexible substrate using the 5-(4-(perfluorohexyl)phenyl)thiophene-2-carbaldehyde compound for microwave imaging. In contrast to other microwave based imaging systems, such as an array of 16 antennas, we proposed a bi-static radar based imaging system consisting of two omnidirectional antennas, which reduces complexity and the overall dimension. The proposed compact antennas are 20 × 14 mm2 and designed for operating at frequencies from 4 to 6 GHz. To allow for implantation into a bra, the electromagnetic performances of the antennas must be considered in bending conditions. In comparison with the recently reported flexible antennas, we demonstrated both electromagnetic performance and imaging reconstruction for bending conditions. For the proof of concept, the electromagnetic performances both at flat and bending conditions have been verified using a homogeneous multilayer model of the human breast phantom. Our results demonstrate that the antenna, even at bending conditions, exhibits an excellent omni-directional radiation pattern with an average efficiency above 70% and average gain above 1 dBi, within the operational frequency band. The comprehensive aim of the realized antenna is to design a biodegradable and wearable antenna-based bra for early breast cancer detection in the future.
    Matched MeSH terms: Microwaves*
  2. Norbahiah Misran, Mohammad Tariqul Islam, Mohammad Rashed Iqbal Faruque, Nurul Hafizah Mohd Hanafi, Farizah Ansarudin, Mohd Faisal Ibrahim
    Sains Malaysiana, 2012;41:779-785.
    Kertas ini membincangkan kaedah untuk mengurangkan kesan interaksi gelombang elektromagnet dengan kepala manusia menggunakan bahan ferit dan metabahan. Pengukuran pengurangan bagi Kadar Penyerapan Spesifik (SAR) menggunakan bahan ferit dan metabahan telah dilaksana dengan kaedah domain-masa perbezaan-terhingga (FDTD) model Lossy-Drude melalui perisian CST Microwave Studio. Metabahan dibentuk dengan menyusun penyalun cincin terpisah (SRRs) secara berkala. Nilai SAR diukur pada beberapa nilai jarak antara model kepala dengan telefon, kelebaran, ketebalan dan ketinggian bahan ferit dan metabahan. Hasil kajian menunjukkan bahawa nilai SAR1g telah berkurang kepada 1.043 W/kg dengan menggunakan bahan ferit dan 1.161 W/kg dengan menggunakan metabahan. Bagi SAR10g, nilai SAR menurun kepada 0.676 W/kg menggunakan bahan ferit dan 0.737 W/kg dengan menggunakan metabahan. Keputusan bagi nilai SAR dalam kepala manusia dengan kehadiran SRR yang membentuk metabahan telah dianalisis untuk menentusahkan kesan bagi pengurangan SAR ini. Keputusan analisis ini boleh memberikan maklumat yang dapat membantu dalam reka bentuk peralatan komunikasi tanpa wayar bagi mematuhi peraturan keselamatan.
    Matched MeSH terms: Microwaves
  3. Azim R, Islam MT, Misran N, Yatim B, Arshad H
    ScientificWorldJournal, 2014;2014:563830.
    PMID: 25133245 DOI: 10.1155/2014/563830
    A small antenna with single notch band at 3.5 GHz is designed for ultrawideband (UWB) communication applications. The fabricated antenna comprises a radiating monopole element and a perfectly conducting ground plane with a wide slot. To achieve a notch band at 3.5 GHz, a parasitic element has been inserted in the same plane of the substrate along with the radiating patch. Experimental results shows that, by properly adjusting the position of the parasitic element, the designed antenna can achieve an ultrawide operating band of 3.04 to 11 GHz with a notched band operating at 3.31-3.84 GHz. Moreover, the proposed antenna achieved a good gain except at the notched band and exhibits symmetric radiation patterns throughout the operating band. The prototype of the proposed antenna possesses a very compact size and uses simple structures to attain the stop band characteristic with an aim to lessen the interference between UWB and worldwide interoperability for microwave access (WiMAX) band.
    Matched MeSH terms: Microwaves*
  4. Alam MS, Islam MT, Arshad H
    ScientificWorldJournal, 2014;2014:159468.
    PMID: 24883354 DOI: 10.1155/2014/159468
    A multiband microstrip resonator is proposed in this study which is realized through a rectangular radiator with embedded symmetrical rectangular slots in it and a defected ground surface. The study is presented with detailed parametric analyses to understand the effect of various design parameters. The design and analyses are performed using the FIT based full-wave electromagnetic simulator CST microwave studio suite. With selected parameter values, the resonator showed a peak gain of 5.85 dBi at 5.2 GHz, 6.2 dBi at 8.3 GHz, 3.9 dBi at 9.5 GHz, 5.9 dBi at 12.2 GHz, and 4.7 dBi at 14.6 GHz. Meanwhile, the main lobe magnitude and the 3 dB angular beam width are 6.2 dBi and 86°, 5.9 dBi and 53.7°, 8.5 dBi and 43.9°, 8.6 dBi and 42.1°, and 4.7 dBi and 30.1°, respectively, at the resonant frequencies. The overall resonator has a compact dimension of 0.52λ  × 0.52λ  × 0.027λ at the lower resonant frequency. For practical validation, a lab prototype was built on a 1.6 mm thick epoxide woven glass fabric dielectric material which is measured using a vector network analyzer and within an anechoic chamber. The comparison between the simulated and measured results showed a very good understanding, which implies the practical suitability of the proposed multiband resonator design.
    Matched MeSH terms: Microwaves*
  5. Khan NI, Ijaz K, Zahid M, Khan AS, Abdul Kadir MR, Hussain R, et al.
    Mater Sci Eng C Mater Biol Appl, 2015 Nov 1;56:286-93.
    PMID: 26249592 DOI: 10.1016/j.msec.2015.05.025
    Hydroxyapatite is used extensively in hard tissue repair due to its biocompatibility and similarity to biological apatite, the mineral component of bone. It differs subtly in composition from biological apatite which contains other ions such as magnesium, zinc, carbonate and silicon (believed to play biological roles). Traditional methods of hydroxyapatite synthesis are time consuming and require strict reaction parameter control. This paper outlines synthesis of magnesium substituted hydroxyapatite using simple microwave irradiation of precipitated suspensions. Microwave irradiation resulted in a drastic decrease in ageing times of amorphous apatitic phases. Time taken to synthesize hydroxyapatite (which remained stable upon heat treatment at 900°C for 1h) reduced twelve folds (to 2h) as compared to traditionally required times. The effects of increasing magnesium concentration in the precursors on particle size, surface area, phase-purity, agglomeration and thermal stability, were observed using scanning electron microscopy, BET surface area analysis, X-ray diffraction and photo acoustic Fourier transform infra-red spectroscopy. Porous agglomerates were obtained after a brief heat-treatment (1h) at 900°C.
    Matched MeSH terms: Microwaves*
  6. Ng KH
    Med Lab Sci, 1991 Jul;48(3):189-92.
    PMID: 1787775
    Uniformity of electric field intensity of microwaves within the microwave oven cavity is necessary to ensure even load-heating, and is particularly important in pathology procedures where small volume irradiation is carried out. A simple and rapid method for mapping electric field distribution, using reversible thermographic paint, is described. Spatial heating patterns for various positions, and the effects of introducing dummy loads to modify heating distributions, have been obtained for a dedicated microwave processor, and comparison made with a domestic microwave oven.
    Matched MeSH terms: Microwaves*
  7. Ho GS, Faizal HM, Ani FN
    Waste Manag, 2017 Nov;69:423-430.
    PMID: 28811144 DOI: 10.1016/j.wasman.2017.08.015
    High temperature thermal plasma has a major drawback which consumes high energy. Therefore, non-thermal plasma which uses comparatively lower energy, for instance, microwave plasma is more attractive to be applied in gasification process. Microwave-induced plasma gasification also carries the advantages in terms of simplicity, compactness, lightweight, uniform heating and the ability to operate under atmospheric pressure that gains attention from researchers. The present paper synthesizes the current knowledge available for microwave plasma gasification on solid fuels and waste, specifically on affecting parameters and their performance. The review starts with a brief outline on microwave plasma setup in general, and followed by the effect of various operating parameters on resulting output. Operating parameters including fuel characteristics, fuel injection position, microwave power, addition of steam, oxygen/fuel ratio and plasma working gas flow rate are discussed along with several performance criteria such as resulting syngas composition, efficiency, carbon conversion, and hydrogen production rate. Based on the present review, fuel retention time is found to be the key parameter that influences the gasification performance. Therefore, emphasis on retention time is necessary in order to improve the performance of microwave plasma gasification of solid fuels and wastes.
    Matched MeSH terms: Microwaves*
  8. Thangavelu SK, Rajkumar T, Pandi DK, Ahmed AS, Ani FN
    Waste Manag, 2019 Mar 01;86:80-86.
    PMID: 30902242 DOI: 10.1016/j.wasman.2019.01.035
    Microwave assisted acid hydrolysis (H2SO4 and HCl with >0.5 mol/L) to produce bioethanol from sago pith waste (SPW) was studied. The energy consumption for microwave hydrolysis at different energy inputs and acid concentration were calculated. The overall energy consumption for bioethanol fuel production from SPW was assessed. A maximum of 88% glucose yield and 80% ethanol yield (3.1 g ethanol per 10 g SPW) were obtained using 1.0 mol/L H2SO4. Microwave hydrolysis using 1.0 mol/L H2SO4 consumed the minimum energy of 8.1 kJ to produce 1 g glucose from SPW when energy input was fixed at 54 kJ (900 W for 1 min). In general, 1 g glucose can produce 16 kJ. The overall energy consumption for fuel grade bioethanol production from SPW was 31.77 kJ per g ethanol, which was slightly higher than the lower heating values of ethanol (26.74 kJ/g ethanol).
    Matched MeSH terms: Microwaves*
  9. Yek PNY, Liew RK, Osman MS, Lee CL, Chuah JH, Park YK, et al.
    J. Environ. Manage., 2019 Apr 15;236:245-253.
    PMID: 30735943 DOI: 10.1016/j.jenvman.2019.01.010
    Microwave-steam activation (MSA), an innovative pyrolysis approach combining the use of microwave heating and steam activation, was investigated for its potential production of high grade activated carbon (AC) from waste palm shell (WPS) for methylene blue removal. MSA was performed via pyrolytic carbonization of WPS to produce biochar as the first step followed by steam activation of the biochar using microwave heating to form AC. Optimum yield and adsorption efficiency of methylene blue were obtained using response surface methodology involving several key process parameters. The resulting AC was characterized for its porous characteristics, surface morphology, proximate analysis and elemental compositions. MSA provided a high activation temperature above 500 °C with short process time of 15 min and rapid heating rate (≤150 °C/min). The results from optimization showed that one gram of AC produced from steam activation under 10 min of microwave heating at 550 °C can remove up to 38.5 mg of methylene blue. The AC showed a high and uniform surface porosity consisting high fixed carbon (73 wt%), micropore and BET surface area of 763.1 and 570.8 m2/g respectively, hence suggesting the great potential of MSA as a promising approach to produce high grade adsorbent for dye removal.
    Matched MeSH terms: Microwaves
  10. Akram M, Alshemary AZ, Goh YF, Wan Ibrahim WA, Lintang HO, Hussain R
    Mater Sci Eng C Mater Biol Appl, 2015 Nov 1;56:356-62.
    PMID: 26249601 DOI: 10.1016/j.msec.2015.06.040
    We have successfully used continuous microwave flow synthesis (CMFS) technique for the template free synthesis of mesoporous hydroxyapatite. The continuous microwave flow reactor consisted of a modified 2.45GHz household microwave, peristaltic pumps and a Teflon coil. This cost effective and efficient system was exploited to produce semi-crystalline phase pure nano-sized hydroxyapatite. Effect of microwave power, retention time and the concentration of reactants on the phase purity, degree of crystallinity and surface area of the final product was studied in detail. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) were used to study the phase purity and composition of the product, while transmission electron microscopy (TEM) was used to study the effect of process parameters on the morphology of hydroxyapatite. The TEM analysis confirmed the formation of spherical particles at low microwave power; however the morphology of the particles changed to mesoporous needle and rod-like structure upon exposing the reaction mixture to higher microwave power and longer retention time inside the microwave. The in-vitro ion dissolution behavior of the as synthesized hydroxyapatite was studied by determining the amount of Ca(2+) ion released in SBF solution.
    Matched MeSH terms: Microwaves*
  11. Chan CH, Yusoff R, Ngoh GC, Kung FW
    J Chromatogr A, 2011 Sep 16;1218(37):6213-25.
    PMID: 21820119 DOI: 10.1016/j.chroma.2011.07.040
    Microwave-assisted extraction (MAE) is widely employed in the analysis and the extraction of active compounds from plants. This review summarizes the research done during the last decade on the MAE of active ingredients from plants. Advances and modifications to improve the performance of MAE are presented and discussed in detail. Modified MAE such as vacuum microwave-assisted extraction (VMAE), nitrogen-protected microwave-assisted extraction (NPMAE), ultrasonic microwave-assisted extraction (UMAE), dynamic microwave-assisted extraction (DMAE) and other advancements in MAE are also detailed in this article. In addition, the microwave extraction procedures and the important parameters influencing its performance are also included, together with the advantages and the drawbacks of each MAE techniques.
    Matched MeSH terms: Microwaves*
  12. Chan CH, See TY, Yusoff R, Ngoh GC, Kow KW
    Food Chem, 2017 Apr 15;221:1382-1387.
    PMID: 27979103 DOI: 10.1016/j.foodchem.2016.11.016
    This work demonstrated the optimization and scale up of microwave-assisted extraction (MAE) and ultrasonic-assisted extraction (UAE) of bioactive compounds from Orthosiphon stamineus using energy-based parameters such as absorbed power density and absorbed energy density (APD-AED) and response surface methodology (RSM). The intensive optimum conditions of MAE obtained at 80% EtOH, 50mL/g, APD of 0.35W/mL, AED of 250J/mL can be used to determine the optimum conditions of the scale-dependent parameters i.e. microwave power and treatment time at various extraction scales (100-300mL solvent loading). The yields of the up scaled conditions were consistent with less than 8% discrepancy and they were about 91-98% of the Soxhlet extraction yield. By adapting APD-AED method in the case of UAE, the intensive optimum conditions of the extraction, i.e. 70% EtOH, 30mL/g, APD of 0.22W/mL, AED of 450J/mL are able to achieve similar scale up results.
    Matched MeSH terms: Microwaves/therapeutic use*
  13. Ng KH, Gan SK
    Malays J Pathol, 1990 Jun;12(1):27-33.
    PMID: 2090887
    We investigated microwave-stimulated fixation of tissues for transmission electron microscopy using a domestic microwave oven operating at a frequency of 2.45 GHz with an output power of 500W. Microwave-stimulated fixation, in 4% glutaraldehyde, of fresh rat kidney, liver, heart and brain tissues was compared to conventional fixation. Human renal biopsies were similarly studied. Electron microscopy showed excellent ultrastructural preservation comparable to that obtained by conventional fixation. The optimal temperature range for microwave-stimulated fixation was found to lie between 50 degrees C and 55 degrees C. Our results indicate that microwave-stimulated fixation is a rapid and reproducible technique and can be effectively applied to routine diagnostic pathology.
    Matched MeSH terms: Microwaves*
  14. Teo CL, Idris A
    Bioresour. Technol., 2014 Dec;174:281-6.
    PMID: 25463809 DOI: 10.1016/j.biortech.2014.10.035
    Nannochloropsis sp. wet biomass was directly transesterified under microwave (MW) irradiation in the presence of methanol and various alkali and acid catalyst. Two different types of direct transesterification (DT) were used; one step and two step transesterification. The biodiesel yield obtained from the MWDT was compared with that obtained using conventional method (lipid extraction followed by transesterification) and water bath heating DT method. Findings revealed that MWDT efficiencies were higher compared to water bath heating DT by at least 14.34% and can achieve a maximum of 43.37% with proper selection of catalysts. The use of combined catalyst (NaOH and H2SO4) increased the yield obtained by 2.3-folds (water bath heating DT) and 2.87-folds (MWDT) compared with the one step single alkaline catalyst respectively. The property of biodiesel produced by MWDT has high lubricating property, good cetane number and short carbon chain FAME's compared with water bath heating DT.
    Matched MeSH terms: Microwaves*
  15. Lahijani P, Zainal ZA, Mohamed AR, Mohammadi M
    Bioresour. Technol., 2014 Apr;158:193-200.
    PMID: 24607454 DOI: 10.1016/j.biortech.2014.02.015
    CO2 gasification of oil palm shell (OPS) char to produce CO through the Boudouard reaction (C + CO2 ↔ 2CO) was investigated under microwave irradiation. A microwave heating system was developed to carry out the CO2 gasification in a packed bed of OPS char. The influence of char particle size, temperature and gas flow rate on CO2 conversion and CO evolution was considered. It was attempted to improve the reactivity of OPS char in gasification reaction through incorporation of Fe catalyst into the char skeleton. Very promising results were achieved in our experiments, where a CO2 conversion of 99% could be maintained during 60 min microwave-induced gasification of iron-catalyzed char. When similar gasification experiments were performed in conventional electric furnace, the superior performance of microwave over thermal driven reaction was elucidated. The activation energies of 36.0, 74.2 and 247.2 kJ/mol were obtained for catalytic and non-catalytic microwave and thermal heating, respectively.
    Matched MeSH terms: Microwaves*
  16. Islam MT, Islam MM, Samsuzzaman M, Faruque MR, Misran N
    Sensors (Basel), 2015 May 20;15(5):11601-27.
    PMID: 26007721 DOI: 10.3390/s150511601
    This paper presents a negative index metamaterial incorporated UWB antenna with an integration of complementary SRR (split-ring resonator) and CLS (capacitive loaded strip) unit cells for microwave imaging sensor applications. This metamaterial UWB antenna sensor consists of four unit cells along one axis, where each unit cell incorporates a complementary SRR and CLS pair. This integration enables a design layout that allows both a negative value of permittivity and a negative value of permeability simultaneous, resulting in a durable negative index to enhance the antenna sensor performance for microwave imaging sensor applications. The proposed MTM antenna sensor was designed and fabricated on an FR4 substrate having a thickness of 1.6 mm and a dielectric constant of 4.6. The electrical dimensions of this antenna sensor are 0.20 λ × 0.29 λ at a lower frequency of 3.1 GHz. This antenna sensor achieves a 131.5% bandwidth (VSWR < 2) covering the frequency bands from 3.1 GHz to more than 15 GHz with a maximum gain of 6.57 dBi. High fidelity factor and gain, smooth surface-current distribution and nearly omni-directional radiation patterns with low cross-polarization confirm that the proposed negative index UWB antenna is a promising entrant in the field of microwave imaging sensors.
    Matched MeSH terms: Microwaves*
  17. Liew SQ, Ngoh GC, Yusoff R, Teoh WH
    Int. J. Biol. Macromol., 2016 Dec;93(Pt A):426-435.
    PMID: 27565298 DOI: 10.1016/j.ijbiomac.2016.08.065
    This study aims to optimize sequential ultrasound-microwave assisted extraction (UMAE) on pomelo peel using citric acid. The effects of pH, sonication time, microwave power and irradiation time on the yield and the degree of esterification (DE) of pectin were investigated. Under optimized conditions of pH 1.80, 27.52min sonication followed by 6.40min microwave irradiation at 643.44W, the yield and the DE value of pectin obtained was respectively at 38.00% and 56.88%. Based upon optimized UMAE condition, the pectin from microwave-ultrasound assisted extraction (MUAE), ultrasound assisted extraction (UAE) and microwave assisted extraction (MAE) were studied. The yield of pectin adopting the UMAE was higher than all other techniques in the order of UMAE>MUAE>MAE>UAE. The pectin's galacturonic acid content obtained from combined extraction technique is higher than that obtained from sole extraction technique and the pectin gel produced from various techniques exhibited a pseudoplastic behaviour. The morphological structures of pectin extracted from MUAE and MAE closely resemble each other. The extracted pectin from UMAE with smaller and more regular surface differs greatly from that of UAE. This has substantiated the highest pectin yield of 36.33% from UMAE and further signified their compatibility and potentiality in pectin extraction.
    Matched MeSH terms: Microwaves*
  18. Alahnomi RA, Zakaria Z, Ruslan E, Ab Rashid SR, Mohd Bahar AA, Shaaban A
    PLoS ONE, 2017;12(9):e0185122.
    PMID: 28934301 DOI: 10.1371/journal.pone.0185122
    A novel symmetrical split ring resonator (SSRR) based microwave sensor with spurline filters for detecting and characterizing the properties of solid materials has been developed. Due to the weak perturbation in the interaction of material under test (MUT) and planar microwave sensor, spurline filters were embedded to the SSRR microwave sensor which effectively enhanced Q-factor with suppressing the undesired harmonic frequency. The spurline filter structures force the presented sensor to resonate at a fundamental frequency of 2.2 GHz with the capabilities of suppressing rejected harmonic frequency and miniaturization in circuit size. A wide bandwidth rejection is achieved by using double spurlines filters with high Q-factor achievement (up to 652.94) compared to single spurline filter. The new SSRR sensor with spurline filters displayed desired properties such as high sensitivity, accuracy, and performance with a 1.3% typical percentage error in the measurement results. Furthermore, the sensor has been successfully applied for detecting and characterizing solid materials (such as Roger 5880, Roger 4350, and FR4) and evidently demonstrated that it can suppress the harmonic frequency effectively. This novel design with harmonic suppression is useful for various applications such as food industry (meat, fruit, vegetables), biological medicine (derived from proteins and other substances produced by the body), and Therapeutic goods (antiseptics, vitamins, anti-psychotics, and other medicines).
    Matched MeSH terms: Microwaves*
  19. Hossain MA, Ganesan PB, Sandaran SC, Rozali SB, Krishnasamy S
    Environ Sci Pollut Res Int, 2017 Dec;24(34):26521-26533.
    PMID: 28948458 DOI: 10.1007/s11356-017-0241-6
    Microwave pyrolysis of oil palm fiber (OPF) with three types of Na-based catalysts was experimentally investigated to produce biochar. Sodium hydroxide (NaOH), sodium chloride (NaCl), and sodium carbonate (Na2CO3) with purity 99.9% were selected for this investigation. Microwave muffle reactor (Model: HAMiab-C1500) with a microwave power controller including a microwave generator was used to perform the microwave pyrolysis. OPF particles were used after removing foreign materials, impurities, and dust. Microwave power ranges from 400 to 900 W, temperature ranges from 450 to 700 °C, and N2 flow rates ranges from 200 to -1200 cm3/min were used along with all three Na-based catalysts for this investigation. Lower microwave power, temperature, and N2 flow rate have been found favorable for higher yield of biochar. NaOH is to be found as the more suitable catalyst than NaCl and Na2CO3 to produce biochar. A maximum biochar yield (51.42 wt%) has been found by using the catalysts NaOH at N2 flow rate of 200 cm3/min. One sample of the biochar (maximum yield without catalysts) was selected for further characterization via thermo gravimetric analysis (TGA), scanning electron microscopy (SEM), BET surface area, Fourier transform infrared spectroscopy (FTIR), and ultimate and proximate analysis. SEM and BET surface area analysis showed the presence of some pores in the biochar. High percentage of carbon (60.24 wt%) was also recorded in the sample biochar. The pores and high percentage of carbon of biochar have significant impact on soil fertilization by increasing the carbon sequestration in the soil. It assists to slow down the decomposition rate of nutrients from soil and therefore enhances the soil quality.
    Matched MeSH terms: Microwaves*
  20. Chua LYW, Chua BL, Figiel A, Chong CH, Wojdyło A, Szumny A, et al.
    Molecules, 2019 04 09;24(7).
    PMID: 30970652 DOI: 10.3390/molecules24071397
    The preservation of active constituents in fresh herbs is affected by drying methods. An effective drying method for Strobilanthes crispus which is increasingly marketed as an important herbal tea remains to be reported. This study evaluated the effects of conventional and new drying technologies, namely vacuum microwave drying methods, on the antioxidant activity and yield of essential oil volatiles and phytosterols. These drying methods included convective drying (CD) at 40 °C, 50 °C, and 60 °C; vacuum microwave drying (VMD) at 6, 9, and 12 W/g; convective pre-drying and vacuum microwave finish drying (CPD-VMFD) at 50 °C and 9 W/g; and freeze-drying (FD). GC–MS revealed 33 volatiles, and 2-hexen-1-ol, 2-hexenal, 1-octen-3-ol, linalool, and benzaldehyde were major constituents. The compounds β-sitosterol and α-linolenic acid were the most abundant phytosterol and fatty acid, respectively, in fresh S. crispus. The highest phenolic content was achieved with CD at 60 °C. The highest antioxidant activity was obtained with CD at 40 °C and VMD at 9 W/g. On the contrary, the highest total volatiles and phytosterols were detected with CD at 50 °C and VMD at 9 W/g, respectively. This study showed that CD and VMD were effective in producing highly bioactive S. crispus. A suitable drying parameter level, irrespective of the drying method used, was an important influencing factor.
    Matched MeSH terms: Microwaves*
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links