Affiliations 

  • 1 Center of Excellence for Food Safety Research (CEFSR), University Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan, Malaysia
J Food Sci, 2013 Jan;78(1):M56-63.
PMID: 23301606 DOI: 10.1111/j.1750-3841.2012.02986.x

Abstract

The aim of this study was to model the radial growth rate and to assess aflatoxin production by Aspergillus flavus as a function of water activity (a(w) 0.82 to 0.92) and temperature (12 to 42 °C) on polished and brown rice. The growth of the fungi, expressed as colony diameter (mm) was measured daily, and the aflatoxins were analyzed using HPLC with a fluorescence detector. The growth rates were estimated using the primary model of Baranyi, which describes the change in colony radius as a function of time. Total of 2 secondary models were used to describe the combined effects of a(w) and temperature on the growth rates. The models were validated using independent experimental data. Linear Arrhenius-Davey model proved to be the best predictor of A. flavus growth rates on polished and brown rice followed by polynomial model. The estimated optimal growth temperature was around 30 °C. A. flavus growth and aflatoxins were not detected at 0.82 a(w) on polished rice while growth and aflatoxins were detected at this a(w) between 25 and 35 °C on brown rice. The highest amounts of toxins were formed at the highest a(w) values (0.90 to 0.92) at a temperature of 20 °C after 21 d of incubation on both types of rice. Nevertheless, the consistencies of toxin production within a wider range of a(w) values occurred between 25 to 30 °C. Brown rice seems to support A. flavus growth and aflatoxin production more than the polished rice.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.