Affiliations 

  • 1 Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
J Cardiovasc Pharmacol, 2009 Apr;53(4):333-40.
PMID: 19295443 DOI: 10.1097/FJC.0b013e31819fd4a7

Abstract

The mechanism by which insulin causes vasodilatation remains unclear, so we explored this in aortic rings from normal Wistar Kyoto and streptozotocin-induced diabetic rats. Insulin-induced relaxation of phenylephrine-contracted [endothelium (ED) intact or denuded] aortic rings was recorded in the presence or absence of various drug probes. Insulin relaxant effect was more in ED-intact than in-denuded tissues from normal or diabetic rats. l-NAME or methylene blue partially inhibited insulin effect in ED-intact but not the ED-denuded tissues, whereas indomethacin (cyclooxygenase inhibitor) had no effect on any of the tissues, indicating that insulin induces relaxation by ED-dependent and -independent mechanisms, the former via the NOS-cyclic guanosine monophosphate but not the cyclooxygenase pathway. The voltage-dependent K channel (KV) blocker (4-aminopyridine) inhibited insulin action in all the tissues (normal or diabetic, with or without ED), whereas the selective BKCa blocker, tetraethylammonium, inhibited it in normal (ED intact or denuded) but not in diabetic tissues, indicating that KV mediates insulin action in normal and diabetic tissues, whereas the BKCa mediates it only in normal tissues, with possible pathophysiologic absence in diabetic tissues. The inward rectifier K channel (Kir) blocker (barium chloride) significantly inhibited insulin effect only in ED-intact or -denuded diabetic tissues, whereas the KATP channel blocker, glibenclamide, inhibited it only in the ED-denuded diabetic tissues, suggesting that Kir channels mediate insulin-induced relaxation in ED-intact or -denuded diabetic tissues, whereas the KATP channel mediates it in ED-denuded diabetic tissues. All the agents combined did not abolish insulin action, suggestive of a direct vasodilatory effect. In conclusion, insulin causes vasodilatation in normal and diabetic tissues via ED-dependent and -independent mechanisms differentially modulated by K channels, some of which functions are altered in diabetes and thus are potential therapeutic targets.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.