Displaying all 12 publications

Abstract:
Sort:
  1. Chellian J, Mak KK, Chellappan DK, Krishnappa P, Pichika MR
    Sci Rep, 2022 Dec 10;12(1):21393.
    PMID: 36496468 DOI: 10.1038/s41598-022-25739-5
    The antidiabetic effects of quercetin and metformin are well known. However, their synergistic effect in reversing the symptoms of diabetes-induced endothelial dysfunction remains unknown. In this study, we have investigated their synergistic effect in streptozotocin (STZ)-nicotinamide induced diabetic rats. Seventy-five rats were divided into five groups; normal control, diabetic control, treatment groups (10 mg/kg quercetin, 180 mg/kg metformin, and combined). The plasma glucose and lipid levels, liver enzymes, ex-vivo studies on aortic rings, histology of liver, kidney, pancreas, abdominal aorta and thoracic aorta, and immunohistochemical studies were carried out. The findings revealed that the combination of quercetin and metformin showed a greater antidiabetic effect than either drug, and rendered protection to the endothelium. The combination effectively reversed the hyperglycemia-induced endothelial dysfunction in diabetic rats. Furthermore, it also reversed the dysregulated expression of eNOS, 3-nitrotyrosine, VCAM-1, CD31 and SIRT-1. Overall, the present study's findings demonstrate that quercetin potentiates the activity of metformin to control the complications associated with diabetes.
    Matched MeSH terms: Streptozocin/pharmacology
  2. Subramaniam G, Achike FI, Mustafa MR
    J Cardiovasc Pharmacol, 2009 Apr;53(4):333-40.
    PMID: 19295443 DOI: 10.1097/FJC.0b013e31819fd4a7
    The mechanism by which insulin causes vasodilatation remains unclear, so we explored this in aortic rings from normal Wistar Kyoto and streptozotocin-induced diabetic rats. Insulin-induced relaxation of phenylephrine-contracted [endothelium (ED) intact or denuded] aortic rings was recorded in the presence or absence of various drug probes. Insulin relaxant effect was more in ED-intact than in-denuded tissues from normal or diabetic rats. l-NAME or methylene blue partially inhibited insulin effect in ED-intact but not the ED-denuded tissues, whereas indomethacin (cyclooxygenase inhibitor) had no effect on any of the tissues, indicating that insulin induces relaxation by ED-dependent and -independent mechanisms, the former via the NOS-cyclic guanosine monophosphate but not the cyclooxygenase pathway. The voltage-dependent K channel (KV) blocker (4-aminopyridine) inhibited insulin action in all the tissues (normal or diabetic, with or without ED), whereas the selective BKCa blocker, tetraethylammonium, inhibited it in normal (ED intact or denuded) but not in diabetic tissues, indicating that KV mediates insulin action in normal and diabetic tissues, whereas the BKCa mediates it only in normal tissues, with possible pathophysiologic absence in diabetic tissues. The inward rectifier K channel (Kir) blocker (barium chloride) significantly inhibited insulin effect only in ED-intact or -denuded diabetic tissues, whereas the KATP channel blocker, glibenclamide, inhibited it only in the ED-denuded diabetic tissues, suggesting that Kir channels mediate insulin-induced relaxation in ED-intact or -denuded diabetic tissues, whereas the KATP channel mediates it in ED-denuded diabetic tissues. All the agents combined did not abolish insulin action, suggestive of a direct vasodilatory effect. In conclusion, insulin causes vasodilatation in normal and diabetic tissues via ED-dependent and -independent mechanisms differentially modulated by K channels, some of which functions are altered in diabetes and thus are potential therapeutic targets.
    Matched MeSH terms: Streptozocin/pharmacology
  3. Tan SC, Rajendran R, Bhattamisra SK, Krishnappa P, Davamani F, Chitra E, et al.
    J Pharm Pharmacol, 2023 Aug 01;75(8):1034-1045.
    PMID: 37402616 DOI: 10.1093/jpp/rgad063
    OBJECTIVES: Madecassoside (MAD) is a triterpenoid constituent of Centella asiatica (L.) Urb., an ethnomedical tropical plant, extracts of which were shown to reduce blood glucose in experimental diabetes. This study examines MAD for its anti-hyperglycaemic effects and tests the hypothesis that it reduces the blood glucose in experimentally induced diabetic rats by protecting the β-cells.

    METHODS: Diabetes was induced using streptozotocin (60 mg/kg, i.v.) followed by nicotinamide (210 mg/kg, intraperitoneal (i.p.)). MAD (50 mg/kg) was administered orally for 4 weeks, commencing 15 days after induction of diabetes; resveratrol (10 mg/kg) was used as a positive control. Fasting blood glucose, plasma insulin, HbA1c, liver and lipid parameters were measured, along with antioxidant enzymes and malondialdehyde as an index of lipid peroxidation; histological and immunohistochemical studies were also undertaken.

    KEY FINDINGS: MAD normalized the elevated fasting blood glucose levels. This was associated with increased plasma insulin concentrations. MAD alleviated oxidative stress by improving enzymatic antioxidants and reducing lipid peroxidation. Histopathological examination showed significant recovery of islet structural degeneration and an increased area of islets. Immunohistochemical staining showed increased insulin content in islets of MAD-treated rats.

    CONCLUSIONS: The results demonstrate an antidiabetic effect of MAD associated with preservation of β-cell structure and function.

    Matched MeSH terms: Streptozocin/pharmacology
  4. Kurnijasanti R, Wardani G, Mustafa MR, Sudjarwo SA
    Open Vet J, 2023 Dec;13(12):1623-1630.
    PMID: 38292712 DOI: 10.5455/OVJ.2023.v13.i12.12
    BACKGROUND: Hyperglycemia increases reactive oxygen species (ROS), which contributes to diabetic complications such as kidney cell damage. Antioxidant administration could inhibit ROS and kidney cell damage commonly seen in hyperglycemia.

    AIM: We want to demonstrate that the antioxidant properties of Swietenia macrophylla ethanol extract nanoparticles can prevent kidney cell damage brought on by streptozotocin (STZ) in the current investigation.

    METHODS: This study employs high-energy ball milling to produce nanoparticles from S. macrophylla extract. Additionally, dynamic light scattering (DLS) is utilized to characterize the nanoparticle sizes of the S. macrophylla ethanol extract. Five groups, each consisting of 8 rats, were formed from 40 rats. Control rats received distilled water, the diabetic rats were administered STZ injections, while S. macrophylla rats were given S. macrophylla extract nanoparticles orally and STZ injection. After the trial, blood from a rat was drawn intracardially to check the levels of blood urea nitrogen (BUN) and creatinine. The levels of superoxide dismutase (SOD), glutathione peroxidase (GPx), and malondialdehyde (MDA) were then assessed in kidney tissue samples. Histological alterations were evaluated in kidney section samples.

    RESULTS: A DLS analysis estimated the size of the S. macrophylla ethanol extract nanoparticles to be about 91.50 ± 23.06 nm. BUN and creatinine levels were significantly raised after STZ treatment. STZ significantly decreased SOD and GPx levels in kidney tissue while raising MDA levels (p < 0.05). Swietenia macrophylla ethanol extract nanoparticle caused the decreased levels of BUN and creatinine in blood to normal levels (p < 0.05), indicating that S. macrophylla ethanol extract prevented the STZ-induced kidney cell damage. Additionally, S. macrophylla nanoparticles significantly raise GPx and SOD levels in kidney tissue while lowering MDA levels (p < 0.05). These actions are thought to have prevented kidney histological alterations (degeneration and necrosis) in diabetic rats.

    CONCLUSION: According to these results, the anti-oxidative stress properties of S. macrophylla nanoparticles make them potentially effective nephroprotective therapies for STZ-induced kidney cell damage.

    Matched MeSH terms: Streptozocin/pharmacology
  5. Wong PL, Zolkeflee NKZ, Ramli NS, Tan CP, Azlan A, Tham CL, et al.
    J Ethnopharmacol, 2024 Jan 10;318(Pt B):117015.
    PMID: 37572932 DOI: 10.1016/j.jep.2023.117015
    ETHNOPHARMACOLOGICAL RELEVANCE: Ardisia elliptica Thunb. (AE) (Primulaceae) is a medicinal plant found in the Malay Peninsula and has been traditionally used to treat diabetes. However, limited studies to date in providing scientific evidence to support the antidiabetic efficacy of this plant by in-vitro and in-vivo models.

    AIM OF THE STUDY: To investigate the anti-hyperglycemic potential of AE through in-vitro enzymatic activities and streptozotocin-nicotinamide (STZ-NA) induced diabetic rat models using proton-nuclear magnetic resonance (1H-NMR)-based metabolomics approach.

    MATERIALS AND METHODS: Anti-α-amylase and anti-α-glucosidase activities of the hydroethanolic extracts of AE were evaluated. The absolute quantification of bioactive constituents, using ultra-high performance liquid chromatography (UHPLC) was performed for the most active extract. Three different dosage levels of the AE extract were orally administered for 4 weeks consecutively in STZ-NA induced diabetic rats. Physical assessments, biochemical analysis, and an untargeted 1H-NMR-based metabolomics analysis of the urine and serum were carried out on the animal model.

    RESULTS: Type 2 diabetes mellitus (T2DM) rat model was successfully developed based on the clear separation observed between the STZ-NA induced diabetic and normal non-diabetic groups. Discriminating biomarkers included glucose, citrate, succinate, allantoin, hippurate, 2-oxoglutarate, and 3-hydroxybutyrate, as determined through an orthogonal partial least squares-discriminant analysis (OPLS-DA) model. A treatment dosage of 250 mg/kg body weight (BW) of standardized 70% ethanolic AE extract mitigated increase in serum glucose, creatinine, and urea levels, providing treatment levels comparable to that obtained using metformin, with flavonoids primarily contribute to the anti-hyperglycemic activities. Urinary metabolomics disclosed that the following disturbed metabolism pathways: the citrate cycle (TCA cycle), butanoate metabolism, glycolysis and gluconeogenesis, pyruvate metabolism, and synthesis and degradation of ketone bodies, were ameliorated after treatment with the standardized AE extract.

    CONCLUSIONS: This study demonstrated the first attempt at revealing the therapeutic effect of oral treatment with 250 mg/kg BW of standardized AE extract on chemically induced T2DM rats. The present study provides scientific evidence supporting the ethnomedicinal use of Ardisia elliptica and further advances the understanding of the fundamental molecular mechanisms affected by this herbal antidote.

    Matched MeSH terms: Streptozocin/pharmacology
  6. Sadikan MZ, Nasir NAA, Agarwal R, Ismail NM
    Biomolecules, 2020 04 05;10(4).
    PMID: 32260544 DOI: 10.3390/biom10040556
    : Oxidative stress plays an important role in retinal neurodegeneration and angiogenesis associated with diabetes. In this study, we investigated the effect of the tocotrienol-rich fraction (TRF), a potent antioxidant, against diabetes-induced changes in retinal layer thickness (RLT), retinal cell count (RCC), retinal cell apoptosis, and retinal expression of vascular endothelial growth factor (VEGF) in rats. Additionally, the efficacy of TRF after administration by two different routes was compared. The diabetes was induced in Sprague-Dawley rats by intraperitoneal injection of streptozotocin. Subsequently, diabetic rats received either oral or topical treatment with vehicle or TRF. Additionally, a group of non-diabetic rats was included with either oral or topical treatment with a vehicle. After 12 weeks of the treatment period, rats were euthanized, and retinas were collected for measurement of RLT, RCC, retinal cell apoptosis, and VEGF expression. RLT and RCC in the ganglion cell layer were reduced in all diabetic groups compared to control groups (p < 0.01). However, at the end of the experimental period, oral TRF-treated rats showed a significantly greater RLT compared to topical TRF-treated rats. A similar observation was made for retinal cell apoptosis and VEGF expression. In conclusion, oral TRF supplementation protects against retinal degenerative changes and an increase in VEGF expression in rats with streptozotocin-induced diabetic retinopathy. Similar effects were not observed after topical administration of TRF.
    Matched MeSH terms: Streptozocin/pharmacology*
  7. Hamzah N, Safuan S, Wan Ishak WR
    Molecules, 2021 Jun 16;26(12).
    PMID: 34208534 DOI: 10.3390/molecules26123665
    Endothelial cell dysfunction is considered to be one of the major causes of vascular complications in diabetes. Polyphenols are known as potent antioxidants that can contribute to the prevention of diabetes. Corn silk has been reported to contain polyphenols and has been used in folk medicine in China for the treatment of diabetes. The present study aims to investigate the potential protective role of the phenolic-rich fraction of corn silk (PRF) against injuries to vascular endothelial cells under high glucose conditions in vitro and in vivo. The protective effect of PRF from high glucose toxicity was investigated using human umbilical vein endothelial cells (HUVECs). The protective effect of PRF was subsequently evaluated by using in vivo methods in streptozotocin (STZ)-induced diabetic rats. Results showed that the PRF significantly reduced the cytotoxicity of glucose by restoring cell viability in a dose-dependent manner. PRF was also able to prevent the histological changes in the aorta of STZ-induced diabetic rats. Results suggested that PRF might have a beneficial effect on diabetic patients and may help to prevent the development and progression of diabetic complications such as diabetic nephropathy and atherosclerosis.
    Matched MeSH terms: Streptozocin/pharmacology
  8. Roslan J, Giribabu N, Karim K, Salleh N
    Biomed Pharmacother, 2017 Feb;86:570-582.
    PMID: 28027533 DOI: 10.1016/j.biopha.2016.12.044
    Quercetin is known to possess beneficial effects in ameliorating diabetic complications, however the mechanisms underlying cardioprotective effect of this compound in diabetes is not fully revealed. In this study, quercetin effect on oxidative stress, inflammation and apoptosis in the heart in diabetes were investigated. Normal and streptozotocin-nicotinamide induced adult male diabetic rats received quercetin (10, 25 and 50mg/kg/bw) orally for 28days were anesthetized and hemodynamic parameters i.e. systolic blood pressure (SBP), diastolic blood pressure (DBP) and heart rate (HR) were measured. Blood was collected for analyses of fasting glucose (FBG), insulin and cardiac injury marker levels (troponin-C, CK-MB and LDH). Following sacrificed, heart was harvested and histopathological changes were observed. Heart was subjected for analyses of oxidative stress marker i.e. lipid peroxidation and activity and expression levels of anti-oxidative enzymes i.e. SOD, CAT and GPx. Levels of inflammation in the heart were determined by measuring nuclear factor (p65-NF-κB), tumor necrosis factor (TNF-α), interleukins (IL)-1β and IL-6 levels by using enzyme-linked immunoassay (ELISA). Distribution and expression levels of TNF-α and Ikk-β (inflammatory markers), caspase-3, caspase-9, Blc-2 and Bax (apoptosis markers) in the heart were identified by immunohistochemistry and Western blotting respectively.
    Matched MeSH terms: Streptozocin/pharmacology
  9. Hidayat AFA, Chan CK, Mohamad J, Kadir HA
    J Ethnopharmacol, 2018 Nov 15;226:120-131.
    PMID: 30118836 DOI: 10.1016/j.jep.2018.08.020
    ETHNOPHARMACOLOGICAL IMPORTANCE: Leptospermum flavescens has been used traditionally in Malaysia to treat various ailments such as constipation, hypertension, diabetes and cancer.

    AIM OF STUDY: To investigate the potential protective effects of L. flavescens in pancreatic β cells through inhibition of apoptosis and autophagy cell death mechanisms in in vitro and in vivo models.

    MATERIALS AND METHODS: L. flavescens leaves were extracted using solvent in increasing polarities: hexane, ethyl acetate, methanol and water. All extracts were tested for INS-1 β cells viability stimulated by streptozotocin (STZ). The extract which promotes the highest cell protective activity was further evaluated for insulin secretion, apoptosis and autophagy signaling pathways. Then, the acute toxicity of extract was carried out in SD rats according to OECD 423 guideline. The active extract was tested in diabetic rats where the pancreatic β islets were evaluated for insulin, apoptosis and autophagy protein.

    RESULTS: The methanolic extract of L. flavescens (MELF) was found to increase INS-1 β cells viability and insulin secretion against STZ. In addition, MELF has been shown to inhibit INS-1 β cells apoptosis and autophagy activity. Notably, there was no toxicity observed in SD rats when administered with MELF. Furthermore, MELF exhibited anti-hyperglycemic activity in diabetic rats where apoptosis and autophagy protein expression was found to be suppressed in pancreatic β islets.

    CONCLUSION: MELF was found to protect pancreatic β cells function from STZ-induced apoptosis and autophagy in in vitro and in vivo.

    Matched MeSH terms: Streptozocin/pharmacology
  10. Adam SH, Giribabu N, Bakar NMA, Salleh N
    Biomed Pharmacother, 2017 Dec;96:716-726.
    PMID: 29040959 DOI: 10.1016/j.biopha.2017.10.042
    Marontades pumilum is claimed to have beneficial effects in the treatment of diabetes mellitus (DM), however the underlying mechanisms were not fully identified. In this study, we hypothesized that M. pumilum could help to enhance cellular glucose uptake and reduces pancreatic complications, which contributed towards its beneficial effects in DM.

    METHODS: Two parameters were measured (i) rate of glucose uptake by 3T3-L1 adipocyte cells in-vitro (ii) degree of pancreatic destruction in streptozotocin-nicotinamide induced male diabetic rats receiving M. pumilum aqueous extract (M.P) (250 and 500mg/kg/day) as reflected by levels of pancreatic oxidative stress, inflammation and apoptosis. In the meantime, phyto-chemical compounds in M.P were also identified by using LC-MS.

    RESULTS: M.P was found able to enhance glucose uptake by 3T3-L1 adipocyte cells in-vitro while its administration to the male diabetic rats causes decreased in the fasting blood glucose (FBG), glycated haemoglobin (HbA1c), total cholesterol (TC), triglycerides (TG), low-density lipoprotein (LDL) levels but causes increased in insulin and high-density lipoprotein (HDL) levels, to near normal. Levels of oxidative stress in the pancreas as reflected by levels of lipid peroxidation product (LPO) decreased while levels of anti-oxidantive enzymes (SOD, CAT and GPx) in pancreas increased. Additionally, levels of inflammation as reflected by NF-κB p65, Ikkβ and TNF-α levels decreased while apoptosis levels as reflected by caspase-9 and Bax levels decreased. Anti-apoptosis marker, Bcl-2 levels in pancreas increased.

    CONCLUSIONS: The ability of M.P to enhance glucose uptake and reduces pancreatic complications could account for its beneficial effects in treating DM.

    Matched MeSH terms: Streptozocin/pharmacology
  11. Ooi J, Adamu HA, Imam MU, Ithnin H, Ismail M
    Biomed Pharmacother, 2018 Feb;98:125-133.
    PMID: 29248832 DOI: 10.1016/j.biopha.2017.12.002
    This study aimed to evaluate the effect of ethyl acetate fraction (EAF) isolated from Molineria latifolia rhizome as dietary interventions for type 2 diabetes mellitus (T2DM) and its underlying molecular mechanisms in vivo. Experimental rats were induced by high fat diet feeding coupled with combined exposure to streptozotocin and nicotinamide. Treatment with EAF improved glucose tolerance and lipid profiles, but the insulin secretion was unaltered. Gene expression analyses on insulin/adipocytokine signalling-related genes demonstrated tissue-specific transcriptional responses. In skeletal muscle and liver tissues, Socs1, Tnf and Mapk8 showed consistent transcript regulation. Furthermore, hepatic translational analyses revealed sensitization on proximal insulin signalling, with reduced expression of IRS1 serine phosphorylation, increased IRS1 tyrosine phosphorylation and increased phospho-AKT (Ser473). The present findings suggested that EAF exerted its effect by modulating insulin signalling, potentially via IRS1/AKT activation. The pharmacological attributes of EAF may implicate its potential therapeutic applications for diabetes management.
    Matched MeSH terms: Streptozocin/pharmacology
  12. Ismail CAN, Suppian R, Abd Aziz CB, Haris K, Long I
    Diabetes Metab J, 2019 Apr;43(2):222-235.
    PMID: 30604591 DOI: 10.4093/dmj.2018.0020
    BACKGROUND: This study investigated the role of NR2B in a modulated pain process in the painful diabetic neuropathy (PDN) rat using various pain stimuli.

    METHODS: Thirty-two Sprague-Dawley male rats were randomly allocated into four groups (n=8): control, diabetes mellitus (DM) rats and diabetic rats treated with ifenprodil at a lower dose (0.5 μg/day) (I 0.5) or higher dose (1.0 μg/day) (I 1.0). DM was induced by a single injection of streptozotocin at 60 mg/kg on day 0 of experimentation. Diabetic status was assessed on day 3 of the experimentation. The responses on both tactile and thermal stimuli were assessed on day 0 (baseline), day 14 (pre-intervention), and day 22 (post-intervention). Ifenprodil was given intrathecally for 7 days from day 15 until day 21. On day 23, 5% formalin was injected into the rats' hind paw and the nociceptive responses were recorded for 1 hour. The rats were sacrificed 72 hours post-formalin injection and an analysis of the spinal NR2B expression was performed.

    RESULTS: DM rats showed a significant reduction in pain threshold in response to the tactile and thermal stimuli and higher nociceptive response during the formalin test accompanied by the higher expression of phosphorylated spinal NR2B in both sides of the spinal cord. Ifenprodil treatment for both doses showed anti-allodynic and anti-nociceptive effects with lower expression of phosphorylated and total spinal NR2B.

    CONCLUSION: We suggest that the pain process in the streptozotocin-induced diabetic rat that has been modulated is associated with the higher phosphorylation of the spinal NR2B expression in the development of PDN, which is similar to other models of neuropathic rats.

    Matched MeSH terms: Streptozocin/pharmacology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links