Malays J Pathol, 2004 Dec;26(2):73-87.
PMID: 16329559

Abstract

OBJECTIVE: To evaluate the range of activation changes of polymorphonuclear leukocytes (PMN) and the ratio of apoptosis and necrosis in synovial effusions of patients with various arthropathies, and to reveal possible correlations with clinical variants of joint inflammation.
METHODS: Synovial effusions were aspirated from the knee joints of patients with rheumatoid arthritis (RA, 28 cases), and seronegative spondyloarthritides (SSA): Reiter's disease (RD, 9 cases), peripheral form of the ankylosing spondyloarthritis (6 cases) and psoriatic arthritis (6 cases); and primary osteoarthritis (OA, 9 cases). Cytospin preparations were processed for transmission electron microscopy and assessed for the incidence of apoptosis, necrosis, and cytophagocytic cells (CPC) in the synovial fluid (SF). The range of activation changes of the neutrophil granulocytes, the dominating cell population in the arthritic SF, was evaluated.
RESULTS: In all arthropathies under investigation most of the synovial effusion cells had intact ultrastructure with a certain amount of apoptotic cells dominating over the cells with signs of necrosis, and a few CPC. The highest rate of apoptosis was discovered in the synovial effusions of patients with RA, the lowest in those with OA, while the rate of CPC among the inflammatory joint diseases was the lowest in RA. In RA the current disease activity correlated with the incidence of apoptotic cells and CPC, while the clinical stage was related only to the CPC rate. These data suggest that in RA, despite exposure to the anti-apoptotic signals, apoptosis of the synovial effusion PMN is maintained at a significantly higher level than in non-rheumatoid arthropathies, both inflammatory (SSA) and degenerative (OA), providing elimination of the neutrophils accumulating in the joint cavity and thus stimulating resolution of the joint inflammation.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.