Studies were conducted to assess the percutaneous absorption of the triacyglycerols (TAGs), tocols and carotenoids present in crude and refined palm oil. In vitro experiments using upright Franz diffusion cells were employed to investigate the permeability of these compounds across full thickness human skin and into the receptor solution. Cetrimide, a cationic surfactant was chosen to be used as a solubilising agent in the receptor phase with an optimum concentration of 3.0 mg/mL and was able to provide sink conditions throughout the permeation. TAGs, tocols and carotenoids all permeated human skin from crude palm oil (CPO), whereas only TAGs permeated when refined palm oil (RPO) was used. Of the TAGs, oleic acid-containing TAGs was preferentially absorbed despite palmitic acid being the most prevalent fatty acid (FA) in TAGs. Tocols in the form of α-T3 showed the highest permeation followed by γ-T3, α-T and the lowest permeation was observed for δ-T3. Carotenoids (α-carotene and β-carotene) also showed an appreciable amount of permeation from CPO.