Methods: The efficacy of desensitizing agents in reducing dentine permeability by occluding dentine tubules was evaluated using a fluid filtration device that conducts at 100 cmH2O (1.4 psi) pressure, and SEM/EDX analyses were evaluated and compared. Forty-two dentine discs (n = 42) of 1 ± 0.2 mm width were obtained from caries-free permanent human molars. Thirty dentine discs (n = 30) were randomly divided into 3 groups (n = 10): Group 1: 2.7% wt. monopotassium-monohydrogen oxalate (Mp-Mh oxalate), Group 2: RMGI XT VAR, and Group 3: LIQ SiO2. Dentine permeability was measured following treatment application after 10 minutes, storage in artificial saliva after 10 minutes and 7 days, and citric acid challenge for 3 minutes. Data were analysed with a repeated measures ANOVA test. Dentine discs (n = 12) were used for SEM/EDX analyses to acquire data on morphological changes on dentine surface and its mineral content after different stages of treatment.
Results: Desensitizing agents' application on the demineralized dentine discs exhibited significant reduction of permeability compared to its maximum acid permeability values. Mp-Mh oxalate showed a significant reduction in dentine permeability (p < 0.05) when compared to RMGI XT VAR and LIQ SiO2. On SEM/EDX analysis, all the agents formed mineral precipitates that occluded the dentine tubules.
Conclusions: 2.7% wt. monopotassium-monohydrogen oxalate was significantly effective in reducing dentine permeability compared to RMGI XT VAR and LIQ SiO2.
METHOD: Four curcumin analogues were synthesized. These analogues and curcumin were evaluated for their BBB permeability in the parallel artificial membrane permeability assay. The transgenic Caenorhabditis elegansGMC101 that expresses human Aβ1-42 was treated with the compounds to evaluate their ability to delay Aβ-induced paralysis. Expression of skn-1mRNA was examined on nematodes treated with selected efficacious compounds. In vitro Aβ aggregation in the presence of the compounds was performed.
KEY FINDINGS: The four analogues showed improved BBB permeability vs curcumin in the PAMPA with the hemi-analogue C4 having the highest permeability coefficient. At 100 μm, analogues C1 and C4 as well as curcumin significantly prolonged the survival of the nematodes protecting against Aβ toxicity. However, only curcumin and C4 showed protection at lower concentrations. skn-1mRNA was significantly elevated in nematodes treated with curcumin and C4 indicating SKN-1/Nrf activation as a possible mode of action.
CONCLUSIONS: Analogue C4 provides a new lead for the development of a curcumin-based compound for protection against Aβ toxicity with an improved BBB permeability.