Thorium is a fertile material that can undergo transmutation for it to become a fissile material,
uranium-233. The fissile material can go through a fission process in order to generate heat energy
and eventually electricity. Most nuclear reactors use uranium as their fission source. The use of
thorium as nuclear fuel has been only investigated for few types of reactors such as a high, temperature
gas reactor (HTGR), fast breeder reactor, light water reactor (LWR) and heavy water reactor
(HWR). For research reactors specifically, there are limited academic publications related to the
la,test u.se of thorium. Hence, the main, interest, of this work is to compile and review the latest
academic publications related to the active use of thorium, for research reactors in particular. The
reviewed studies have been, divided into two categories which are experimented and simulation projects.
The experimental projects are a,bold the ongoing thorium fuel tests that have been carried out. in an
actual, research reactor. On the hand, the simulation work: is related to the computational analysis
performed in predicting the neutronic behaviour of thorium based fuel in research reactors. The
experimented study of thorium is currently active for the KAMINI research reactor. Additionally, most,
simulation works focus on finding criticality and neutron spectra.