Affiliations 

  • 1 Universiti Malaysia Pahang
Food Research, 2018;2(1):110-118.
MyJurnal

Abstract

The increase in the price of commercial succinic acid has necessitated the need for its
synthesis from waste materials such as glycerol. Glycerol residue is a waste product of
Oleochemical production which is cheaply available and a very good source of carbon.
The use of immobilized cells can further reduce the overall cost of the production process.
This study primarily aims to produce succinic acid from glycerol residue through the use
of immobilized Escherichia coli in a batch fermentation process. The parameters which
affect bacterial fermentation process such as the mass substrate, temperature, inoculum
size and duration of fermentation were screened using One-Factor-At-a-Time (OFAT)
method. The result of the screening process shows that a substrate (glycerol) concentration
of 30 g, inoculum size 20% v/v, and time 4 h produced the maximum succinic acid
concentration of 117.99 g/L. The immobilized cells were found to be stable as well as
retain their fermentative ability up to the 6th cycle of recycling, thereby presenting as an
advantage over the free cell system. Therefore, conclude that using immobilized cells can
contribute immensely to the cost-effective production of succinic acid from glycerol
residue.