Displaying publications 1 - 20 of 91 in total

  1. Choong TSY, Yeoh CM, Phuah ET, Siew WL, Lee YY, Tang TK, et al.
    PLoS ONE, 2018;13(2):e0192375.
    PMID: 29401481 DOI: 10.1371/journal.pone.0192375
    Diacylglycerol (DAG) and monoacylglycerol (MAG) are two natural occurring minor components found in most edible fats and oils. These compounds have gained increasing market demand owing to their unique physicochemical properties. Enzymatic glycerolysis in solvent-free system might be a promising approach in producing DAG and MAG-enriched oil. Understanding on glycerolysis mechanism is therefore of great importance for process simulation and optimization. In this study, a commercial immobilized lipase (Lipozyme TL IM) was used to catalyze the glycerolysis reaction. The kinetics of enzymatic glycerolysis reaction between triacylglycerol (TAG) and glycerol (G) were modeled using rate equation with unsteady-state assumption. Ternary complex, ping-pong bi-bi and complex ping-pong bi-bi models were proposed and compared in this study. The reaction rate constants were determined using non-linear regression and sum of square errors (SSE) were minimized. Present work revealed satisfactory agreement between experimental data and the result generated by complex ping-pong bi-bi model as compared to other models. The proposed kinetic model would facilitate understanding on enzymatic glycerolysis for DAG and MAG production and design optimization of a pilot-scale reactor.
    Matched MeSH terms: Glycerol/chemistry*
  2. Zulkurnain M, Lai OM, Tan SC, Abdul Latip R, Tan CP
    J. Agric. Food Chem., 2013 Apr 3;61(13):3341-9.
    PMID: 23464796 DOI: 10.1021/jf4009185
    The reduction of 3-monochloropropane-1,2-diol (3-MCPD) ester formation in refined palm oil was achieved by incorporation of additional processing steps in the physical refining process to remove chloroester precursors prior to the deodorization step. The modified refining process was optimized for the least 3-MCPD ester formation and acceptable refined palm oil quality using response surface methodology (RSM) with five processing parameters: water dosage, phosphoric acid dosage, degumming temperature, activated clay dosage, and deodorization temperature. The removal of chloroester precursors was largely accomplished by increasing the water dosage, while the reduction of 3-MCPD esters was a compromise in oxidative stability and color of the refined palm oil because some factors such as acid dosage, degumming temperature, and deodorization temperature showed contradictory effects. The optimization resulted in 87.2% reduction of 3-MCPD esters from 2.9 mg/kg in the conventional refining process to 0.4 mg/kg, with color and oil stability index values of 2.4 R and 14.3 h, respectively.
    Matched MeSH terms: Glycerol/analogs & derivatives*; Glycerol/chemical synthesis
  3. Zulkurnain M, Lai OM, Latip RA, Nehdi IA, Ling TC, Tan CP
    Food Chem, 2012 Nov 15;135(2):799-805.
    PMID: 22868161 DOI: 10.1016/j.foodchem.2012.04.144
    The formation of 3-monochloropropane-1,2-diol (3-MCPD) esters in refined palm oil during deodorisation is attributed to the intrinsic composition of crude palm oil. Utilising D-optimal design, the effects of the degumming and bleaching processes on the reduction in 3-MCPD ester formation in refined palm oil from poor-quality crude palm oil were studied relative to the palm oil minor components that are likely to be their precursors. Water degumming remarkably reduced 3-MCPD ester formation by up to 84%, from 9.79 mg/kg to 1.55 mg/kg. Bleaching with synthetic magnesium silicate caused a further 10% reduction, to 0.487 mg/kg. The reduction in 3-MCPD ester formation could be due to the removal of related precursors prior to the deodorisation step. The phosphorus content of bleached palm oil showed a significant correlation with 3-MCPD ester formation.
    Matched MeSH terms: Glycerol/analogs & derivatives*; Glycerol/chemistry
  4. Cheng KK, Lee BS, Masuda T, Ito T, Ikeda K, Hirayama A, et al.
    Nat Commun, 2014;5:3233.
    PMID: 24481126 DOI: 10.1038/ncomms4233
    Comparative whole-genome sequencing enables the identification of specific mutations during adaptation of bacteria to new environments and allelic replacement can establish their causality. However, the mechanisms of action are hard to decipher and little has been achieved for epistatic mutations, especially at the metabolic level. Here we show that a strain of Escherichia coli carrying mutations in the rpoC and glpK genes, derived from adaptation in glycerol, uses two distinct metabolic strategies to gain growth advantage. A 27-bp deletion in the rpoC gene first increases metabolic efficiency. Then, a point mutation in the glpK gene promotes growth by improving glycerol utilization but results in increased carbon wasting as overflow metabolism. In a strain carrying both mutations, these contrasting carbon/energy saving and wasting mechanisms work together to give an 89% increase in growth rate. This study provides insight into metabolic reprogramming during adaptive laboratory evolution for fast cellular growth.
    Matched MeSH terms: Glycerol/metabolism*; Glycerol Kinase/genetics*
  5. Arifin, N., Cheong, L.Z., Koh, S.P., Long, K., Tan, C.P., Yusoff, M.S.A., et al.
    ASM Science Journal, 2010;4(2):113-122.
    Several binary and ternary medium- and long-chain triacylglycerol (MLCT)-enriched margarine formulations were examined for their solid fat content, heating profile, polymorphism and textural properties. MLCT feedstock was produced through enzymatic esterification of capric and stearic acids with glycerol. The binary formulations were produced by mixing MLCT feedstock blend (40%–90%) and palm olein (10%–60%) with 10% increments (w/w). Solid fat profiles of commercial margarines were used as a reference to determine the suitability of the formulations for margarine production. The solid fat content of the binary formulations of MO 82 and MO 91 (M, MLCT, O, palm olein) were similar to the commercial margarines at 25°C which met the basic requirement for efficient dough consistency. Ternary formulations using reduced MLCT feedstock blend proportion (from 80%–90% to 60%–70%) were also developed. The reduction of MLCT feedstock blend was
    done as it had the highest production cost (3USD/kg) in comparison to palm olein (0.77USD/kg) and palm stearin (0.7USD/kg). The proportions of 5%–15% of palm stearin were substituted with palm olein in MO 64 and MO 73 (M, MLCT; O, palm olein) formulations with 5% increment (w/w). As a result, MOS 702010 and MOS 603010 (M, MLCT; O, palm olein; S, palm stearin) margarine formulations showed similar SFC % to the commercial margarines at 25ºC. These formulations were subsequently chosen to produce margarines. The onset melting and complete melting points of MLCT-enriched margarine formulations were high (51.04ºC –57.93ºC) due to the presence of a high amount of long chain saturated fatty acids. Most of the formulations showed β΄- crystals. MOS 702010 was selected as the best formulation due to values for textural parameters comparable (P
    Matched MeSH terms: Glycerol
  6. Yusrabbil Amiyati Yusof, Zafarizal Aldrin Azizul Hasan, Azhar Ariffin
    Sains Malaysiana, 2018;47:511-515.
    This paper reports the effects of glyceryl ether specifically mono-tert-butoxypropanediol on oil in water emulsion system.
    Based on 12 HLB value, screening for stable emulsions was carried out without the presence of glyceryl ether. A stable
    emulsion was used as a control. Then the effects of glyceryl ether on the emulsion system were investigated. The emulsions
    prepared were analyzed for stability, viscosity, pH value, particle size, in vitro dermal irritation potential, in vitro ocular
    irritation potential and also moisturizing property. The incorporation of glycerol in the emulsion system was also done
    for comparison. Emulsions with glyceryl ether showed lower viscosity values than emulsions with glycerol. Furthermore,
    the emulsions also exhibited moisturizing property compared to the control emulsion. Glyceryl ether is suitable to be
    used in cosmetic products which require reduced viscosity but retain its skin hydration property.
    Matched MeSH terms: Glycerol
  7. Sahari J, Sapuan SM, Zainudin ES, Maleque MA
    Carbohydr Polym, 2013 Feb 15;92(2):1711-6.
    PMID: 23399210 DOI: 10.1016/j.carbpol.2012.11.031
    In recent years, increasing environmental concerns focused greater attention on the development of biodegradable materials. A thermoplastic starch derived from bioresources, sugar palm tree was successfully developed in the presence of biodegradable glycerol as a plasticizer. Sugar palm starch (SPS) was added with 15-40 w/w% of glycerol to prepare workable bioplastics and coded as SPS/G15, SPS/G20, SPS/G30 and SPS/G40. The samples were characterized for thermal properties, mechanical properties and moisture absorption on exposure to humidity were evaluated. Morphological studies through scanning electron microscopy (SEM) were used to explain the observed mechanical properties. Generally, the addition of glycerol decrease the transition temperature of plasticized SPS. The mechanical properties of plasticized SPS increase with the increasing of glycerol but up to 30 w/w%. Meanwhile, the water absorption of plasticized SPS decrease with increasing of glycerol.
    Matched MeSH terms: Glycerol/chemistry
  8. Shafie MH, Samsudin D, Yusof R, Gan CY
    Int. J. Biol. Macromol., 2018 Oct 15;118(Pt A):1183-1192.
    PMID: 29944943 DOI: 10.1016/j.ijbiomac.2018.06.103
    Momordica charantia bioactive polysaccharide (MCBP) was used as an alternative source for the production of bio-based plastics (BPs) with choline chloride/glycerol-based deep eutectic solvent (DES) as a plasticizer. In this study, MCBP was initially extracted using 0.1 M citric acid at temperature 80 °C for 2 h, precipitated using ethanol, and then lyophilized. Subsequently, seven BPs were prepared: MCBP without plasticizer (MCBP), with 1% (w/w) of glycerol (MCBP-G), or with 1% (w/w) of DES at different choline chloride/glycerol molar ratios (i.e. 1.5:1, 1:1, 1:1.5, 1:2, and 1:3). The properties of these BPs were then investigated. Results showed that the tensile strains, stresses and moduli were in the range of 1.3-13.3%, 4.8-19.1 MPa and 132-2487 MPa, respectively. The melting temperatures were found in the range of 92.6-111.4 °C whereas the moisture absorptions and water vapour transmission rates (WVTR) of BPs were 1.4-6.5% and 3.6-5.4 mg/m2·s, respectively. The results also showed that these BPs exhibited bioactivities, such as microbial inhibitory activity (19.5-32.3 mm), free radical scavenging activity (10.3-18.3%) and ferric reducing antioxidant power (FRAP, 16.1-20.0 mM). In addition, it was observed that using DES as a plasticizer had improved the properties of BP, such as tensile strain (354.7-937.5%), melting temperature (4.6-20.3%), radical scavenging activity (0.6-88.6%), FRAP (0.9-18.7%) and antimicrobial activity (12.3-33.6%) compared to MCBP, due to the fact DES has caused different degrees of plasticization via hydrogen bonds and ionic bonds with the polymer chains, and induced a lower pH condition. Therefore, it was suggested that these BPs with DES could contribute to food preservation properties.
    Matched MeSH terms: Glycerol/chemistry*
  9. Tee ZK, Jahim JM, Tan JP, Kim BH
    Bioresour. Technol., 2017 Jun;233:296-304.
    PMID: 28285221 DOI: 10.1016/j.biortech.2017.02.110
    Calcium carbonate was evaluated as a replacement for the base during the fermentation of glycerol by a highly productive strain of 1,3-propanediol (PDO), viz., Clostridium butyricum JKT37. Due to its high specific growth rate (µmax=0.53h(-1)), 40g/L of glycerol was completely converted into 19.6g/L of PDO in merely 7h of batch fermentation, leaving only acetate and butyrate as the by-products. The accumulation of these volatile fatty acids was circumvented with the addition of calcium carbonate as the pH neutraliser before the fermentation was inoculated. An optimal amount of 15g/L of calcium carbonate was statistically determined from screening with various glycerol concentrations (20-120g/L). By substituting potassium hydroxide with calcium carbonate as the pH neutraliser for fermentation in a bioreactor, a similar yield (YPDO/glycerol=0.6mol/mol) with a constant pH was achieved at the end of the fermentation.
    Matched MeSH terms: Glycerol
  10. Jafarizadeh Malmiri, H., Osman, A., Tan, C.P., Abdul Rahman, R.
    Response surface methodology (RSM) was used to optimize the concentrations of chitosan and glycerol for coating Berangan banana (Musa sapientum cv. Berangan). The effects of main edible coating components, chitosan (0.5-2.5%, w/w) and glycerol (0-2%, w/w) on weight loss, firmness, total colour difference, total soluble solids content (TSS) and titratable acidity (TA) of coated banana were studied during 10 days of storage at 26±2°C and 40-50% relative humidity. Results showed that the experimental data could be adequately fitted into a second-order polynomial model with coefficient of determination (R 2 ) ranging from 0.745 to 0.930 for all the variables studied. In general, the chitosan concentration appeared to be the most significant (P< 0.1) factor influencing all variables except for TSS. The optimum concentration of chitosan and glycerol were predicted to be 2.02% and 0.18%, respectively. Statistical assessment showed insignificant difference between experimental and predicted values.
    Matched MeSH terms: Glycerol
  11. Yeoh, T.K., Cheah, Y.K., Davies, R.
    Mid-exponential phase Saccharomyces rouxii YSa40 cells subsequently stressed at low aw/pH in the 0.64 aw/pH 3.5 glycerol/CPB system became injured. Such injury was detected by the loss of ability of the
    stressed population to form colonies on secondary-stress plating medium (glycerol/BM agar at 0.94 aw
    /pH 3.5 (lactic acid)) while colony forming ability on secondary non-stress plating medium (sugars/BM agar at 0.94 aw/pH 3.5 (lactic) was unaffected. The injury was shown to be due to sensitivity to glycerol/lactic acid. Results of the present study will be useful for achieving complete decontamination of ‘Intermediate Moisture Foods’ against xerotolerant molds and yeast.
    Matched MeSH terms: Glycerol
  12. Akbari A, Mohammadian E, Alavi Fazel SA, Shanbedi M, Bahreini M, Heidari M, et al.
    ACS Omega, 2019 Apr 30;4(4):7038-7046.
    PMID: 31459815 DOI: 10.1021/acsomega.9b00176
    Many studies have investigated natural convection heat transfer from the outside surface of horizontal and vertical cylinders in both constant heat flux and temperature conditions. However, there are poor studies in natural convection from inclined cylinders. In this study, free convection heat transfer was examined experimentally from the outside surface of a cylinder for glycerol and water at various heat fluxes. The tests were performed at 10 different inclination angles of the cylinder, namely, φ = 0°, 10°, 20°, 30°, 40°, 50°, 60°, 70°, 80°, and 90°, measured from the horizon. Our results indicated that the average Nusselt number reduces with the growth in the inclination of the cylinder to the horizon at the same heat flux, and the average Nusselt number enhanced with the growth in heat flux at the same angle. Also, the average Nusselt number of water is greater than that of glycerol. A new experimental model for predicting the average Nusselt number is suggested, which has a satisfactory accuracy for experimental data.
    Matched MeSH terms: Glycerol
  13. Zainol S, Basri M, Basri HB, Shamsuddin AF, Abdul-Gani SS, Karjiban RA, et al.
    Int J Mol Sci, 2012;13(10):13049-64.
    PMID: 23202937 DOI: 10.3390/ijms131013049
    Response surface methodology (RSM) was utilized to investigate the influence of the main emulsion composition; mixture of palm and medium-chain triglyceride (MCT) oil (6%-12% w/w), lecithin (1%-3% w/w), and Cremophor EL (0.5%-1.5% w/w) as well as the preparation method; addition rate (2-20 mL/min), on the physicochemical properties of palm-based nanoemulsions. The response variables were the three main emulsion properties; particle size, zeta potential and polydispersity index. Optimization of the four independent variables was carried out to obtain an optimum level palm-based nanoemulsion with desirable characteristics. The response surface analysis showed that the variation in the three responses could be depicted as a quadratic function of the main composition of the emulsion and the preparation method. The experimental data could be fitted sufficiently well into a second-order polynomial model. The optimized formulation was stable for six months at 4 °C.
    Matched MeSH terms: Glycerol/analogs & derivatives; Glycerol/chemistry
  14. Tang SY, Manickam S, Wei TK, Nashiru B
    Ultrason Sonochem, 2012 Mar;19(2):330-45.
    PMID: 21835676 DOI: 10.1016/j.ultsonch.2011.07.001
    In the present study, response surface methodology (RSM) based on central composite design (CCD) was employed to investigate the influence of main emulsion composition variables, namely drug loading, oil content, emulsifier content as well as the effect of the ultrasonic operating parameters such as pre-mixing time, ultrasonic amplitude, and irradiation time on the properties of aspirin-loaded nanoemulsions. The two main emulsion properties studied as response variables were: mean droplet size and polydispersity index. The ultimate goal of the present work was to determine the optimum level of the six independent variables in which an optimal aspirin nanoemulsion with desirable properties could be produced. The response surface analysis results clearly showed that the variability of two responses could be depicted as a linear function of the content of main emulsion compositions and ultrasonic processing variables. In the present investigation, it is evidently shown that ultrasound cavitation is a powerful yet promising approach in the controlled production of aspirin nanoemulsions with smaller average droplet size in a range of 200-300 nm and with a polydispersity index (PDI) of about 0.30. This study proved that the use of low frequency ultrasound is of considerable importance in the controlled production of pharmaceutical nanoemulsions in the drug delivery system.
    Matched MeSH terms: Glycerol/analogs & derivatives*; Glycerol/chemistry
  15. Khayoon MS, Hameed BH
    Bioresour. Technol., 2011 Oct;102(19):9229-35.
    PMID: 21840708 DOI: 10.1016/j.biortech.2011.07.035
    Oxygenated fuel additives can be produced by acetylation of glycerol. A 91% glycerol conversion with a selectivity of 38%, 28% and 34% for mono-, di- and triacetyl glyceride, respectively, was achieved at 120 °C and 3 h of reaction time in the presence of a catalyst derived from activated carbon (AC) treated with sulfuric acid at 85 °C for 4h to introduce acidic functionalities to its surface. The unique catalytic activity of the catalyst, AC-SA5, was attributed to the presence of sulfur containing functional groups on the AC surface, which enhanced the surface interaction between the glycerol molecule and acyl group of the acetic acid. The catalyst was reused in up to four consecutive batch runs and no significant decline of its initial activity was observed. The conversion and selectivity variation during the acetylation is attributed to the reaction time, reaction temperature, catalyst loading and glycerol to acetic acid molar ratio.
    Matched MeSH terms: Glycerol/analysis; Glycerol/metabolism*
  16. Abd Razak RA, Ahmad Tarmizi AH, Abdul Hammid AN, Kuntom A, Ismail IS, Sanny M
    PMID: 31437078 DOI: 10.1080/19440049.2019.1654139
    This study was conducted to investigate on the effect of different sampling regions of palm-refined oils and fats on the 2- and 3-monochloropropanediol fatty acid esters (MCPDE) and glycidol fatty acid esters (GE) levels. The American Oil Chemists' Society (AOCS) Official Method Cd 29a-13 on the determination of MCPDE and GE in edible oils and fats by acid transesterification was successfully verified and optimised, with slight modification using 7890A Agilent GC system equipped with 5975C quadrupole detector. The determined limits of detection (LOD) for MCPDE were 0.02 mg kg-1 and 0.05 mg kg-1 for GE. The method performance has showed good recovery between 80% and 120% for all pertinent compounds with seven replicates assayed in three separate days. Round robin test with two European laboratories, i.e. Eurofins and SGS, has shown compliance results with those of the present study. Among the sampling regions, only one refinery located in the central region of Malaysia showed a significant increment of the MCPDE and GE levels after refining process. The GE level averaging at 2.5 mg kg-1 was slightly higher than that of 3-MCPDE averaging at 1.3 mg kg-1. Both esters were preferentially partitioned into the liquid phase rather than the solid phase after fractionation. However, the overall results exhibited no direct correlation between the esters content and the different sampling locations of the palm oil products in Malaysia. Analysis of total chlorine content also displayed significant variations between sampling locations which clearly show its effect on the chlorine content in the CPO samples.
    Matched MeSH terms: Glycerol/analogs & derivatives*; Glycerol/analysis
  17. Suresh K, Init I, Reuel PA, Rajah S, Lokman H, Khairul Anuar A
    Parasitol. Res., 1998;84(4):321-2.
    PMID: 9569099
    Matched MeSH terms: Glycerol
  18. Mohd Cairul Iqbal Mohd Amin, Fell, J.T.
    Polyvinyl chloride (PVC) and ammonio methacrylate copolymer (Eudragit RS 100) were used as models in binary mixture tablets of direct compression study. Eudragit RS 100 is a copolymer synthesized from acrylic and methacrylic acid esters with a low content of quaternary ammonium groups. Combination of PVC and Eudragit RS 100 of different polarities and knowing the surface free energy values allow the possibility of predicting the tensile strength of the tablets. Specimens of 500 mg in the form of thin plates (25 mm x 12.5 mm), were made by compressing each powder at 20 000 MP a compression pressure using a special punch and die set. A Howden Universal Testing Machine was used to compress the powder. Contact angle measurements of the samples were carried out using a Wilhelmy balance, ran by a Cahn Dynamic Contact Angle Machine while different test liquids media such as water, glycerol, formamide and PEG 200 were used in the study. The surface free energy values of the solid materials were calculated using Wu's equation. The results showed large differences between the advancing and receding contact angle values for both materials when tested with glycerol: PVC (0) and PVC (0,) were 93.2 and 65.24 while Eudragit RS 100 (0) and Eudragit RS 100 (0) were 94.56 and 68.18 respectively. The surface free energy values for PVC using PEG 200-glycerol liquid pair were Is: 38.01, ysci: 33.42, ysP: 4.59 and for Eudragit RS 100 using formamide-glycerol liquid pair were ys: 75.03, yd: 51.66, ysP : 23.37, respectively. The results showed harder solid material like Eudragit RS 100 had higher surface free energy compared to elastic material like PVC.
    Matched MeSH terms: Glycerol
  19. Rusidah Mat Yatim, Kannan, Thirumulu Ponnuraj, Suzina Sheikh Ab Hamid, Shazana Hilda Shamsudin
    The aim of this study was to determine the efficiency of different human amniotic membrane (HAM) processing methods on the concentration, purity and integrity of RNA. Two different techniques (Technique1 andTechnique2) were employed for the processing of HAM, which differed in terms of washing solution, sample storage conditions and processing time. Based on preservation of HAM, three groups were formed under each technique. In Technique 1, the groups were fresh frozen 1 (F1), glycerol preserved (GP) and gamma irradiated glycerol preserved (IGP); where else in Technique 2, the groups were fresh frozen 2 (F2), 50%glycerol/Dulbecco’s modified Eagle medium (DMEM) cryopre served HAM diluted with phosphate buffered saline(GB) and 50% glycerol/DMEM cryop reserved HAM diluted with diethyl procarbonate water (GD). Total RNA was extracted from the samples and their concentration, purity and integrity were examined. The F2 sample of which there was no pre-washing step and involved direct sample storage at-80oC, shorter processing time and chilled processing conditions had yielded better quality of RNA compared to the others.
    Matched MeSH terms: Glycerol
  20. Al-Araji, L., Rahman, R.N.Z.A., Basri, M., Salleh, A.B.
    ASM Science Journal, 2008;2(1):45-56.
    The growth and production of biosurfactant by P. seudomonas aeruginosa (181) was dependant on nutritional factors. Among the eleven carbon sources tested, glucose supported the maximum growth (0.25 g/L) with the highest biosurfactant yield and this was followed by glycerol. Glucose reduced the surface tension to 35.3 dyne/cm and gave an E24 reading of 62.7%. Butanol gave the lowest growth and had no biosurfactant production. For the nitrogen sources tested, casamino acid supported a growth of 0.21 g/L which reduced the surface tension to 41.1 dyne/cm and gave an E24 reading of 56%. Soytone was assimilated similarly, with good growth and high biosurfactant production. Corn steep liquor gave the lowest growth and did not show any biosurfactant activity.
    Matched MeSH terms: Glycerol
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links