Molybdenum, an emerging pollutant, has being demonstrated recently to be toxic to
spermatogenesis in several animal model systems. Metal mines especially gold mine often use
cyanide and hence isolation of metal-reducing and cyanide-degrading bacteria can be useful for
the bioremediation of these pollutants. Preliminary screening shows that three cyanide-degrading
bacteria were able to reduce molybdenum to molybdenum blue (Mo-blue) when grown on a
molybdate low phosphate minimal salts media. Phylogenetic analyses of the 16S rRNA gene of
the best reducer indicates that it belongs to the Serratia genus. A variety of mathematical models
such as logistic, Gompertz, Richards, Schnute, Baranyi-Roberts, von Bertalanffy, Buchanan
three-phase and Huang were used to model molybdenum reduction, and the best model based on
statistical analysis was modified Gompertz with lowest values for RMSE and AICc, highest
adjusted R2 values, with Bias Factor and Accuracy Factor nearest to unity (1.0). The reduction
constants obtained from the model will be used to carry out secondary modelling to study the
effect of various parameters such as substrate, pH and temperature to molybdenum reduction.